帳號:guest(3.145.102.131)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):銘 月
作者(外文):Sarangadharan, Indu
論文名稱(中文):應用於生物醫學的電雙層閘控場效電晶體感測器之設計製造與特性
論文名稱(外文):Design, fabrication and characterization of electrical double layer gated field effect transistor (FET) sensors for biomedical applications
指導教授(中文):王玉麟
指導教授(外文):Wang, Yu-Lin
口試委員(中文):李昇憲
林宗宏
李博仁
口試委員(外文):Li, Sheng-Shian
Lin, Zong-Hong
Li, Bor-Ran
學位類別:博士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:104035892
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:189
中文關鍵詞:場效應晶體管雙電層生物傳感器疾病生物標誌物蛋白傳感器模型
外文關鍵詞:Field Effect Transistorelectrical double layerbiosensordisease biomarkerproteinsensor model
相關次數:
  • 推薦推薦:0
  • 點閱點閱:269
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
心血管疾病(CVD)是世界上死亡率和發病率最高的疾病。現今的心血管疾病(例如:心肌梗塞(MI)和心力衰竭(HF))臨床檢測是利用對血液中蛋白質生物標記濃度進行評估。然而現今的檢測技術,需要昂貴且複雜的實驗室大型儀器來進行,檢測過程耗時且成本高昂。針對此問題,我們擬開發一快速診斷工具,將半導體技術和生物醫學工程結合,開發一生物感測器晶片。此生醫感測晶片技術將提供快速且便宜的心血管疾病篩檢方式。在此項研究中,我們致力開發的生物感測晶片具備便攜性、高敏感度、無須繁雜的操作步驟及免除試劑的優點。能在5分鐘內檢測人類血液中的蛋白質生物標記濃度。此晶片技術採用電雙層(EDL)場效電晶體(FET)生物感測器,此設計克服尋常FET感測器於高鹽度環境中電荷屏蔽的限制,在人體鹽類濃度環境下仍具備良好的感測靈敏度。
此研究中研發了兩種類型生物感測晶片:FET嵌入式感測晶片及和柵極延伸FET感測器晶片。FET嵌入式感測晶片將測試溶液與FET通道接觸影響電訊號。 柵極延伸FET感測器晶片則將感測區域建於延伸柵極的金屬電極,將感測區域上的免疫化學反應轉化為電訊號輸出。更高的電場輔助選通晶體管的漏極電流可以提高FET感測晶片於全血檢測中的靈敏度和選擇性,並使FET感測晶片具備更低的檢測極限和更寬的濃度檢測範圍。此感測晶片的感測過程,通過在將一滴血滴在感測晶片上,接著把裝置向下翻轉,血液中的細胞將因重力與血漿分離。在5分鐘的感測時間後,便攜式傳感器系統測量感測器輸出電信號,並將測量結果呈現在個人電腦中。我們已經在標準生理緩衝液中成功檢測人血清與全血中的心肌肌鈣蛋白I(cTnI),利尿鈉肽(BNP和NT-proBNP)和D-二聚體等心血管疾病相關生物標記。此技術透過市場調查以及商業評估,認為此技術具備低成本及操作簡單的優點。我們的心血管疾病生醫感測晶片檢測能由任意人員操作並在5分鐘內獲得檢測結果。適合在家庭,辦公室和醫院等場所運用。此外,FET生物感測器平台用於生物組織的電學表徵,證明我們的感測器平台在外科手術輔助工具中的潛在應用。
為了進一步研究感測器表面的物理現象以及更好的感測器結構設計。我們針對不同感測器結構設計影響進行了調查,並將最佳傳感的關鍵設計參數確定為電極間距離,傳感區域,表面功能化和測試溶液介電強度。使用交流電阻抗分析技術建立感測器模型調查信號轉導中的電容性質。
總結此項研究:一、一種新型EDL門控FET生物感測器,其性能優於傳統的FET生物感測器。二、使用EDL門控FET生物傳感器進行全血蛋白質生物標記診斷。三、使用EDL門控FET生物感測器的生物組織表徵工具。四、建立EDL門控FET生物感測器的信號轉導機制。五、研究感測器相關機制,以增強使用EDL門控FET生物感測器對蛋白質檢測的靈敏度。
In this age of scientific and technological revolution, the diseases that can be easily managed/cured are still proving fatal, with increased mortality and morbidity rates, which do not seem to improve. Cardiovascular diseases (CVDs) are the foremost reasons of mortality and/or morbidity in the world. Medical intervention carried out for CVDs such as myocardial infarction (MI) and heart failure (HF) are based on the assessment of the amount of certain molecular biomarkers like proteins from blood, which necessitate complex and laboratory bound instruments that are expensive, labor intensive and time-consuming. For developing a rapid diagnostic or screening tool, we focused on integrating semiconductor technology and biomedical engineering, on a single biosensor chip that would facilitate consumer based biomedical applications. Through this research, we primarily aim to develop a portable and sensitive biosensing platform to detect protein biomarkers present in whole blood, in the span of 5 minutes, by eliminating the use of any extensive sampling steps or additional reagents. The sensing approach employs an electrical double layer (EDL) gated field effect transistor (FET) biosensor, which has improved sensitivity in high ionic strength test media, overcoming the fundamental limitation of charge screening in traditional FET biosensors. Two types of sensing structures are investigated: FET embedded sensor structure, where the test solution comes in contact with FET channel during signal transduction; and extended gate structure, in which a pair of gold based electrodes intended as extended gate assemblies, translate the immunochemical reactions at the sensor surface into electrical output. Higher electric field assisted gating of the drain current of transistor allows improved sensitivity and selectivity, low detection limit and a wide dynamic range of detection, in whole blood. By placing just a drop of blood on the device, the cellular components found in blood are gravitationally separated from the blood plasma during the 5 minutes of incubation time period, by inverting the device’s orientation downwards. A portable sensor system is devised to measure the output signals from the sensor and present the measurement results in personal computer integrated with the measurement unit. We have demonstrated the detection of clinically relevant cardiac markers such as cardiac troponin I (cTnI), natriuretic peptides (BNP and NT-proBNP) and D-dimer in standard physiological buffer, human serum and whole blood. The sensor technology has been established to significantly bring down the overall cost and complexity of the assay, with nominal user intervened protocols. The whole blood assay developed using our sensor can be executed at the accessibility of homes, offices and hospitals, by persons with or without prior training, in just 5 minutes. Furthermore, the FET biosensor platform is utilized for electrical characterization of biological tissues, to elucidate potential applications of our sensor platform in surgical assistance tools. To further elucidate the physical phenomenon at the sensor interface, an investigation into the sensor response at the wake of different structural design considerations is carried out and critical design parameters for optimal sensing are identified as inter-electrode distance, sensing area, surface functionalization and test solution dielectric strength. AC impedance analysis is used to develop a sensor model to encompass the capacitive nature of signal transduction. To summarize, this research describes: i. a novel EDL gated FET biosensor that outperforms the traditional FET biosensors, ii. a whole blood protein diagnostic assay using EDL gated FET biosensor, iii. a biological tissue characterization tool using EDL gated FET biosensor, iv. modeling of signal transduction mechanism of EDL gated FET biosensor and v. design guidelines to enhance sensitivity of protein detection using EDL gated FET biosensor.
Chapter 1. Introduction 9
1.1 Motivation 9
1.2 Project Goal 12
Chapter 2. Literature Review 17
2.1 Molecular Biomarkers 17
2.2 Point of care and home-care diagnostics 19
2.3 Field effect transistor (FET) based biosensor 22
2.3.1 AlGaN/GaN high electron mobility transistor (HEMT) 33
Chapter 3. Experimental Design 37
3.1 AlGaN/GaN HEMT fabrication 37
3.2 Fabrication of extended gate sensor array chip 40
3.3 Surface functionalization 41
3.4 Measurement of sensor 44
3.5 Protein elution process 44
Chapter 4. Results and Discussion 46
Section 4.1. Electrical Double Layer (EDL) gated FET Biosensor: Structure and mechanism 47
4.1.1 Sensor design 47
4.1.2 Sensor working 49
Section 4.2. Protein biomarker detection using contact mode HEMT embedded biosensor 57
4.2.1 Objective 57
4.2.2 Contact mode EDL gated HEMT embedded biosensor for Cardiac troponin I detection 61
4.2.2.a Antibody based cTnI detection 61
4.2.2.b Aptamer based cTnI detection 69
4.2.2.c Portable biosensor system for high sensitivity cTnI assay 72
4.2.3 Contact mode EDL gated HEMT embedded biosensor for BNP detection 77
4.2.3.a Detection of purified BNP in 1X PBS with 4% BSA 77
4.2.3.b Detection of BNP in human serum 78
Section 4.3. Whole Blood Diagnostics using Extended gate EDL FET Biosensor 81
4.3.1 Objective 81
4.3.2 Background response of whole blood on extended gate EDL FET biosensor 82
4.3.3 cTnI detection using extended gate EDL FET biosensor 92
4.3.3.a Detection of purified cTnI in 150 mM standard buffer solution with 4% BSA 92
4.3.3.b Detection of cTnI spiked in whole blood 95
4.3.3.c Detection of cTnI in clinical whole blood 98
4.3.4 BNP detection using extended gate EDL FET biosensor 102
4.3.4.a Detection of purified BNP in 1X PBS with 4% BSA 102
4.3.4.b Detection of BNP spiked in whole blood 103
4.3.4.c Detection of BNP in clinical whole blood 104
4.3.5 NT-proBNP detection using extended gate EDL FET biosensor 107
4.3.5.a NT-proBNP detection in 1X PBS with 4% BSA 108
4.3.5.b Sensor characteristics in whole blood 111
4.3.5.c Sensitivity as a function of surface receptor immobilization 116
Section 4.4. Sensor mechanism 123
4.4.1 Objective 123
4.4.2 Effect of electric field strength on sensitivity 124
4.4.3 Design considerations of the liquid gated FET sensor 127
4.4.3.a Investigation of liquid gated FET drain current characteristics 127
4.4.3.b AC impedance analysis for investigation of sensor design 134
4.4.4 Protein detection in different sensor design 145
4.4.5 Sensor model 149
4.4.6 Protein detection in different ionic strength 157
Section 4.5. Electrical characterization of biological tissue 161
4.5.1 Objective 161
4.5.2 Single pulse measurement of biological tissue 163
4.5.3 Biphasic pulse measurement of biological tissue 168
Chapter 5. Future Work 174
Chapter 6. Summary 179
Reference 181

2000. Cardiovascular disease. Nat Biotech 18, IT15 - IT17.
2016. 8. Cardiovascular Disease and Risk Management. Diabetes Care 39(Supplement 1), S60-S71.
Abel, G., 2015. Current status and future prospects of point-of-care testing around the globe. Expert Review of Molecular Diagnostics 15(7), 853-855.
Amundson Beret, E., Apple Fred, S., 2015. Cardiac troponin assays: a review of quantitative point-of-care devices and their efficacy in the diagnosis of myocardial infarction. Clinical Chemistry and Laboratory Medicine (CCLM), p. 665.
Anderson, N.L., Anderson, N.G., 2002. The Human Plasma Proteome: History, Character, and Diagnostic Prospects. Molecular & Cellular Proteomics 1(11), 845-867.
Apple, F.S., Ler, R., Chung, A.Y., Berger, M.J., Murakami, M.M., 2006. Point-of-Care i-STAT Cardiac Troponin I for Assessment of Patients with Symptoms Suggestive of Acute Coronary Syndrome. Clinical Chemistry 52(2), 322-325.
Babuin, L., Jaffe, A.S., 2005. Troponin: the biomarker of choice for the detection of cardiac injury. CMAJ : Canadian Medical Association Journal 173(10), 1191-1202.
Bergveld, P., 1991. A critical evaluation of direct electrical protein detection methods. Biosensors and Bioelectronics 6(1), 55-72.
Berney, H., J O Riordan, J., 2008. Impedance measurement monitors blood coagulation.
Bhalla, V., Carrara, S., Sharma, P., Nangia, Y., Raman Suri, C., 2012. Gold nanoparticles mediated label-free capacitance detection of cardiac troponin I. Sensors and Actuators B: Chemical 161(1), 761-768.
Casas, O., Bragós, R., Riu, P.J., Rosell, J., Tresànchez, M., Warren, M., Rodriguez-Sinovas, A., Carreño, A., Cinca, J., 1999. In Vivo and In Situ Ischemic Tissue Characterization Using Electrical Impedance Spectroscopya. Annals of the New York Academy of Sciences 873(1), 51-58.
Cheng, S., Hotani, K., Hideshima, S., Kuroiwa, S., Nakanishi, T., Hashimoto, M., Mori, Y., Osaka, T., 2014. Field Effect Transistor Biosensor Using Antigen Binding Fragment for Detecting Tumor Marker in Human Serum. Materials 7(4), 2490-2500.
Cho, I.-H., Paek, E.-H., Kim, Y.-K., Kim, J.-H., Paek, S.-H., 2009. Chemiluminometric enzyme-linked immunosorbent assays (ELISA)-on-a-chip biosensor based on cross-flow chromatography. Analytica chimica acta 632(2), 247-255.
Choi, D.H., Lee, S.K., Oh, Y.K., Bae, B.W., Lee, S.D., Kim, S., Shin, Y.-B., Kim, M.-G., 2010. A dual gold nanoparticle conjugate-based lateral flow assay (LFA) method for the analysis of troponin I. Biosensors and Bioelectronics 25(8), 1999-2002.
Christenson, R.H., Azzazy, H.M.E., 2006. Biomarkers of Myocardial Necrosis. In: Morrow, D.A. (Ed.), Cardiovascular Biomarkers: Pathophysiology and Disease Management, pp. 3-25. Humana Press, Totowa, NJ.
Chu, C.-H., Sarangadharan, I., Regmi, A., Chen, Y.-W., Hsu, C.-P., Chang, W.-H., Lee, G.-Y., Chyi, J.-I., Chen, C.-C., Shiesh, S.-C., Lee, G.-B., Wang, Y.-L., 2017. Beyond the Debye length in high ionic strength solution: direct protein detection with field-effect transistors (FETs) in human serum. Scientific Reports 7(1), 5256.
Cines, D.B., Lebedeva, T., Nagaswami, C., Hayes, V., Massefski, W., Litvinov, R.I., Rauova, L., Lowery, T.J., Weisel, J.W., 2013. Clot contraction: compression of erythrocytes into tightly packed polyhedra and redistribution of platelets and fibrin. Blood.
Coulter, A., Harris, R., 1983. Simplified preparation of rabbit fab fragments. Journal of Immunological Methods 59(2), 199-203.
Cowie, M.R., Jourdain, P., Maisel, A., Dahlstrom, U., Follath, F., Isnard, R., Luchner, A., McDonagh, T., Mair, J., Nieminen, M., Francis, G., 2003. Clinical applications of B-type natriuretic peptide (BNP) testing. European Heart Journal 24(19), 1710-1718.
Davis, B.H., Barnes, P.W., 2012. Automated Cell Analysis: Principles. Laboratory Hematology Practice, pp. 26-32. Wiley-Blackwell.
de Lemos , J.A., Lloyd-Jones , D.M., 2008. Multiple Biomarker Panels for Cardiovascular Risk Assessment. New England Journal of Medicine 358(20), 2172-2174.
Elnathan, R., Kwiat, M., Pevzner, A., Engel, Y., Burstein, L., Khatchtourints, A., Lichtenstein, A., Kantaev, R., Patolsky, F., 2012. Biorecognition Layer Engineering: Overcoming Screening Limitations of Nanowire-Based FET Devices. Nano Letters 12(10), 5245-5254.
Fan, X., Sang, S., Hu, J., Li, P., Li, G., Zhang, W., 2012. Recent Development of Silicon Nanowire FET Biosensor for DNA Detection. 2012 International Conference on Computing, Measurement, Control and Sensor Network, pp. 201-205.
Fogelson, A.L., Neeves, K.B., 2015. Fluid Mechanics of Blood Clot Formation. Annual review of fluid mechanics 47, 377-403.
Fujimoto, T., Awaga, K., 2013. Electric-double-layer field-effect transistors with ionic liquids. Physical Chemistry Chemical Physics 15(23), 8983-9006.
Gao, N., Gao, T., Yang, X., Dai, X., Zhou, W., Zhang, A., Lieber, C.M., 2016. Specific detection of biomolecules in physiological solutions using graphene transistor biosensors. Proceedings of the National Academy of Sciences 113(51), 14633-14638.
Geyer, Philipp E., Kulak, Nils A., Pichler, G., Holdt, Lesca M., Teupser, D., Mann, M., Plasma Proteome Profiling to Assess Human Health and Disease. Cell Systems 2(3), 185-195.
Giaever, I., Keese, C.R., 1991. Micromotion of mammalian cells measured electrically. Proceedings of the National Academy of Sciences of the United States of America 88(17), 7896-7900.
Hideshima, S., Fujita, K., Harada, Y., Tsuna, M., Seto, Y., Sekiguchi, S., Kuroiwa, S., Nakanishi, T., Osaka, T., 2016. Signal amplification in electrochemical detection of buckwheat allergenic protein using field effect transistor biosensor by introduction of anionic surfactant. Sensing and Bio-Sensing Research 7, 90-94.
Ho, N.T., Fan, A., Klapperich, C.M., Cabodi, M., 2012. Sample Concentration and Purification for Point-of-Care Diagnostics. Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference 2012, 2396-2399.
Holmes, D.L., Stellwagen, N.C., 1990. The electric field dependence of DNA mobilities in agarose gels: A reinvestigation. ELECTROPHORESIS 11(1), 5-15.
Hsu, C.-P., Chen, P.-C., Pulikkathodi, A.K., Hsiao, Y.-H., Chen, C.-C., Wang, Y.-L., 2017. A Package Technology for Miniaturized Field-Effect Transistor-Based Biosensors and the Sensor Array. ECS Journal of Solid State Science and Technology 6(5), Q63-Q67.
Jameson, E., Alvarez-Tostado, C., 1939. A Study of Blood Serum Proteins by Electrophoresis. The Journal of Physical Chemistry 43(9), 1165-1172.
Jang, H.R., Wark, A.W., Baek, S.H., Chung, B.H., Lee, H.J., 2014. Ultrasensitive and Ultrawide Range Detection of a Cardiac Biomarker on a Surface Plasmon Resonance Platform. Analytical Chemistry 86(1), 814-819.
Jo, H., Gu, H., Jeon, W., Youn, H., Her, J., Kim, S.-K., Lee, J., Shin, J.H., Ban, C., 2015. Electrochemical Aptasensor of Cardiac Troponin I for the Early Diagnosis of Acute Myocardial Infarction. Analytical Chemistry 87(19), 9869-9875.
JOSSINET, J., SCHMITT, M., 1999. A Review of Parameters for the Bioelectrical Characterization of Breast Tissue. Annals of the New York Academy of Sciences 873(1), 30-41.
Kanderian, A.S., Francis, G.S., 2006. Cardiac troponins and chronic kidney disease. Kidney International 69(7), 1112-1114.
Kang, B.S., Wang, H.T., Ren, F., Pearton, S.J., 2008. Electrical detection of biomaterials using AlGaN/GaN high electron mobility transistors. Journal of Applied Physics 104(3), 031101.
Karyakin, A.A., Presnova, G.V., Rubtsova, M.Y., Egorov, A.M., 2000. Oriented Immobilization of Antibodies onto the Gold Surfaces via Their Native Thiol Groups. Analytical Chemistry 72(16), 3805-3811.
Kobayashi, K., Yoshida, S., Saijo, Y., Hozumi, N., 2014. Acoustic impedance microscopy for biological tissue characterization. Ultrasonics 54(7), 1922-1928.
Kruskal, Peter B., Jiang, Z., Gao, T., Lieber, Charles M., Beyond the Patch Clamp: Nanotechnologies for Intracellular Recording. Neuron 86(1), 21-24.
Kulkarni, G.S., Zhong, Z., 2012. Detection beyond the Debye Screening Length in a High-Frequency Nanoelectronic Biosensor. Nano Letters 12(2), 719-723.
Kurita, R., Yokota, Y., Sato, Y., Mizutani, F., Niwa, O., 2006. On-Chip Enzyme Immunoassay of a Cardiac Marker Using a Microfluidic Device Combined with a Portable Surface Plasmon Resonance System. Analytical Chemistry 78(15), 5525-5531.
Kwon, Y.-C., Kim, M.-G., Kim, E.-M., Shin, Y.-B., Lee, S.-K., Lee, S.D., Cho, M.-J., Ro, H.-S., 2011. Development of a surface plasmon resonance-based immunosensor for the rapid detection of cardiac troponin I. Biotechnology Letters 33(5), 921-927.
Laborde, C., Pittino, F., Verhoeven, H.A., Lemay, S.G., Selmi, L., Jongsma, M.A., Widdershoven, F.P., 2015. Real-time imaging of microparticles and living cells with CMOS nanocapacitor arrays. Nature Nanotechnology 10, 791.
Lee, D.-W., Lee, J., Sohn, I.Y., Kim, B.-Y., Son, Y.M., Bark, H., Jung, J., Choi, M., Kim, T.H., Lee, C., Lee, N.-E., 2015. Field-effect transistor with a chemically synthesized MoS2 sensing channel for label-free and highly sensitive electrical detection of DNA hybridization. Nano Research 8(7), 2340-2350.
Lei, K.F., Chen, K.-H., Tsui, P.-H., Tsang, N.-M., 2013. Real-Time Electrical Impedimetric Monitoring of Blood Coagulation Process under Temperature and Hematocrit Variations Conducted in a Microfluidic Chip. PLoS ONE 8(10), e76243.
Lerner, M.B., D’Souza, J., Pazina, T., Dailey, J., Goldsmith, B.R., Robinson, M.K., Johnson, A.T.C., 2012. Hybrids of a Genetically Engineered Antibody and a Carbon Nanotube Transistor for Detection of Prostate Cancer Biomarkers. ACS Nano 6(6), 5143-5149.
Li, Z., Wang, Y., Wang, J., Tang, Z., Pounds, J.G., Lin, Y., 2010. Rapid and Sensitive Detection of Protein Biomarker Using a Portable Fluorescence Biosensor Based on Quantum Dots and a Lateral Flow Test Strip. Analytical Chemistry 82(16), 7008-7014.
Lin, D.C.C., Diamandis, E.P., Januzzi, J.L., Maisel, A., Jaffe, A.S., Clerico, A., 2014. Natriuretic Peptides in Heart Failure. Clinical Chemistry 60(8), 1040-1046.
Lin, S.-P., Pan, C.-Y., Tseng, K.-C., Lin, M.-C., Chen, C.-D., Tsai, C.-C., Yu, S.-H., Sun, Y.-C., Lin, T.-W., Chen, Y.-T., 2009. A reversible surface functionalized nanowire transistor to study protein–protein interactions. Nano Today 4(3), 235-243.
Lin, Y.-H., Chu, C.-P., Lin, C.-F., Liao, H.-H., Tsai, H.-H., Juang, Y.-Z., 2015. Extended-gate field-effect transistor packed in micro channel for glucose, urea and protein biomarker detection. Biomedical Microdevices 17(6), 111.
Lo, C.M., Keese, C.R., Giaever, I., 1995. Impedance analysis of MDCK cells measured by electric cell-substrate impedance sensing. Biophysical Journal 69(6), 2800-2807.
Loewenstein, D., Stake, C., Cichon, M., 2013. Assessment of using fingerstick blood sample with i-STAT point-of-care device for cardiac troponin I assay. The American Journal of Emergency Medicine 31(8), 1236-1239.
Mahshid, S.S., Camiré, S., Ricci, F., Vallée-Bélisle, A., 2015. A Highly Selective Electrochemical DNA-Based Sensor That Employs Steric Hindrance Effects to Detect Proteins Directly in Whole Blood. Journal of the American Chemical Society 137(50), 15596-15599.
Mariani, M., Camagna, M., Tarditi, L., Seccamani, E., 1991. A new enzymatic method to obtain high-yield F(ab)2 suitable for clinical use from mouse IgGl. Mol Immunol 28(1-2), 69-77.
Matsuura, H., Sato, Y., Niwa, O., Mizutani, F., 2005. Electrochemical Enzyme Immunoassay of a Peptide Hormone at Picomolar Levels. Analytical Chemistry 77(13), 4235-4240.
Mehandru, R., Luo, B., Kang, B.S., Kim, J., Ren, F., Pearton, S.J., Pan, C.C., Chen, G.T., Chyi, J.I., 2004. AlGaN/GaN HEMT based liquid sensors. Solid-State Electronics 48(2), 351-353.
Monteiro, M.S., Carvalho, M., Bastos, M.L., Pinho, P.G.d., 2013. Metabolomics Analysis for Biomarker Discovery: Advances and Challenges. Current Medicinal Chemistry 20(2), 257-271.
Munje, R.D., Muthukumar, S., Jagannath, B., Prasad, S., 2017. A new paradigm in sweat based wearable diagnostics biosensors using Room Temperature Ionic Liquids (RTILs). Scientific Reports 7(1), 1950.
Münzer, A.M., Seo, W., Morgan, G.J., Michael, Z.P., Zhao, Y., Melzer, K., Scarpa, G., Star, A., 2014. Sensing Reversible Protein–Ligand Interactions with Single-Walled Carbon Nanotube Field-Effect Transistors. The Journal of Physical Chemistry C 118(31), 17193-17199.
Mythili, S., Malathi, N., 2015. Diagnostic markers of acute myocardial infarction. Biomedical Reports 3(6), 743-748.
Natriuretic Peptides Studies, C., 2016. Natriuretic peptides and integrated risk assessment for cardiovascular disease: an individual-participant-data meta-analysis. The Lancet. Diabetes & Endocrinology 4(10), 840-849.
Nishikimi, T., Okamoto, H., Nakamura, M., Ogawa, N., Horii, K., Nagata, K., Nakagawa, Y., Kinoshita, H., Yamada, C., Nakao, K., Minami, T., Kuwabara, Y., Kuwahara, K., Masuda, I., Kangawa, K., Minamino, N., Nakao, K., 2013. Direct Immunochemiluminescent Assay for proBNP and Total BNP in Human Plasma proBNP and Total BNP Levels in Normal and Heart Failure. PLoS ONE 8(1), e53233.
Palazzo, G., De Tullio, D., Magliulo, M., Mallardi, A., Intranuovo, F., Mulla, M.Y., Favia, P., Vikholm-Lundin, I., Torsi, L., 2015. Detection Beyond Debye's Length with an Electrolyte-Gated Organic Field-Effect Transistor. Advanced Materials 27(5), 911-916.
Presnova, G., Presnov, D., Krupenin, V., Grigorenko, V., Trifonov, A., Andreeva, I., Ignatenko, O., Egorov, A., Rubtsova, M., 2017. Biosensor based on a silicon nanowire field-effect transistor functionalized by gold nanoparticles for the highly sensitive determination of prostate specific antigen. Biosensors and Bioelectronics 88, 283-289.
Pulikkathodi, A.K., Sarangadharan, I., Chen, Y.-H., Lee, G.-Y., Chyi, J.-I., Lee, G.-B., Wang, Y.-L., 2018. A Comprehensive Model for Whole Cell Sensing and Transmembrane Potential Measurement Using FET Biosensors. ECS Journal of Solid State Science and Technology 7(7), Q3001-Q3008.
Pulikkathodi, A.K., Sarangadharan, I., Hsu, C.-P., Chen, Y.-H., Hung, L.-Y., Lee, G.-Y., Chyi, J.-I., Lee, G.-B., Wang, Y.-L., 2018. Enumeration of circulating tumor cells and investigation of cellular responses using aptamer-immobilized AlGaN/GaN high electron mobility transistor sensor array. Sensors and Actuators B: Chemical 257(Supplement C), 96-104.
Roberts, E., Ludman, A.J., Dworzynski, K., Al-Mohammad, A., Cowie, M.R., McMurray, J.J.V., Mant, J., 2015. The diagnostic accuracy of the natriuretic peptides in heart failure: systematic review and diagnostic meta-analysis in the acute care setting. BMJ : British Medical Journal 350.
Roth, G.A., Huffman, M.D., Moran, A.E., Feigin, V., Mensah, G.A., Naghavi, M., Murray, C.J.L., 2015. Global and Regional Patterns in Cardiovascular Mortality From 1990 to 2013. Circulation 132(17), 1667-1678.
Sandoval, Y., Smith, S.W., Thordsen, S.E., Bruen, C.A., Carlson, M.D., Dodd, K.W., Driver, B.E., Jacoby, K., Johnson, B.K., Love, S.A., Moore, J.C., Sexter, A., Schulz, K., Scott, N.L., Nicholson, J., Apple, F.S., 2017. Diagnostic Performance of High Sensitivity Compared with Contemporary Cardiac Troponin I for the Diagnosis of Acute Myocardial Infarction. Clinical Chemistry 63(10), 1594-1604.
Schasfoort, R.B.M., Bergveld, P., Kooyman, R.P.H., Greve, J., 1990. Possibilities and limitations of direct detection of protein charges by means of an immunological field-effect transistor. Analytica Chimica Acta 238(Supplement C), 323-329.
Schasfoort, R.B.M., Kooyman, R.P.H., Bergveld, P., Greve, J., 1990. A new approach to immunoFET operation. Biosensors and Bioelectronics 5(2), 103-124.
Schasfoort, R.B.M., Streekstra, G.J., Bergveld, P., Kooyman, R.P.H., Greve, J., 1989. Influence of an immunological precipitate on D.C. and A.C. behaviour of an isfet. Sensors and Actuators 18(2), 119-129.
Schoning, M.J., Poghossian, A., 2002. Recent advances in biologically sensitive field-effect transistors (BioFETs). Analyst 127(9), 1137-1151.
Shah, A.S.V., Anand, A., Sandoval, Y., Lee, K.K., Smith, S.W., Adamson, P.D., Chapman, A.R., Langdon, T., Sandeman, D., Vaswani, A., Strachan, F.E., Ferry, A., Stirzaker, A.G., Reid, A., Gray, A.J., Collinson, P.O., McAllister, D.A., Apple, F.S., Newby, D.E., Mills, N.L., High-sensitivity cardiac troponin I at presentation in patients with suspected acute coronary syndrome: a cohort study. The Lancet 386(10012), 2481-2488.
Shanmugam, N.R., Selvam, A.P., Barrett, T.W., Kazmierczak, S.C., Rana, M.N., Prasad, S., 2015. Portable nanoporous electrical biosensor for ultrasensitive detection of Troponin-T. Future Science OA 1(3), null.
Shoorideh, K., Chui, C.O., 2014. On the origin of enhanced sensitivity in nanoscale FET-based biosensors. Proceedings of the National Academy of Sciences of the United States of America 111(14), 5111-5116.
Smith, S.R., Foster, K.R., 1985. Dielectric properties of low-water-content tissues. Physics in Medicine & Biology 30(9), 965.
Song, S.Y., Han, Y.D., Kim, K., Yang, S.S., Yoon, H.C., 2011. A fluoro-microbead guiding chip for simple and quantifiable immunoassay of cardiac troponin I (cTnI). Biosensors and Bioelectronics 26(9), 3818-3824.
St John, A., Price, C.P., 2014. Existing and Emerging Technologies for Point-of-Care Testing. The Clinical Biochemist Reviews 35(3), 155-167.
Steinhoff, G., Hermann, M., Schaff, W.J., Eastman, L.F., Stutzmann, M., Eickhoff, M., 2003. pH response of GaN surfaces and its application for pH-sensitive field-effect transistors. Applied Physics Letters 83(1), 177-179.
Stern, E., Vacic, A., Rajan, N.K., Criscione, J.M., Park, J., Ilic, B.R., Mooney, D.J., Reed, M.A., Fahmy, T.M., 2010. Label-free biomarker detection from whole blood. Nature nanotechnology 5(2), 138-142.
Strimbu, K., Tavel, J.A., 2010. What are Biomarkers? Current opinion in HIV and AIDS 5(6), 463-466.
Svetličić, V., Ivošević, N., Kovač, S., Žutić, V., 2000. Charge Displacement by Adhesion and Spreading of a Cell:  Amperometric Signals of Living Cells. Langmuir 16(21), 8217-8220.
Svetličić, V., Ivošević, N., Kovač, S., Žutić, V., 2001. Charge displacement by adhesion and spreading of a cell. Bioelectrochemistry 53(1), 79-86.
Tanić, M., Beck, S., 2017. Epigenome-wide association studies for cancer biomarker discovery in circulating cell-free DNA: technical advances and challenges. Current Opinion in Genetics & Development 42(Supplement C), 48-55.
Tate, J.B., J.; Bunk, D, 2012. Analytical characteristics of commercial and research cardiac troponin I and T assays declared by the manufacturer.
Taylor, S.H., 1996. Congestive heart failureTowards a comprehensive treatment. European Heart Journal 17(suppl_B), 43-56.
Thomas, L.W., 1962. THE CHEMICAL COMPOSITION OF ADIPOSE TISSUE OF MAN AND MICE. Quarterly Journal of Experimental Physiology and Cognate Medical Sciences 47(2), 179-188.
Timasheff, S.N., 1993. The Control of Protein Stability and Association by Weak Interactions with Water: How Do Solvents Affect These Processes? Annual Review of Biophysics and Biomolecular Structure 22(1), 67-97.
Toumazou, C., Georgiou, P., 2011. Piet Bergveld - 40 years of ISFET technology: from neuronal sensing to DNA sequencing. Electronics Letters 47(26), S7-S12.
Ur, A., 1970. Changes in the Electrical Impedance of Blood during Coagulation. Nature 226(5242), 269-270.
Ur, A., 1977. Analysis and Interpretation of the Impedance Blood Coagulation Curve. American Journal of Clinical Pathology 67(5), 470-476.
Vlasak, J., Ionescu, R., 2011. Fragmentation of monoclonal antibodies. mAbs 3(3), 253-263.
Wang, Y.-L., Chu, B.H., Chen, K.H., Chang, C.Y., Lele, T.P., Tseng, Y., Pearton, S.J., Ramage, J., Hooten, D., Dabiran, A., Chow, P.P., Ren, F., 2008. Botulinum toxin detection using AlGaN∕GaN high electron mobility transistors. Applied Physics Letters 93(26), 262101.
Woo, J.-M., Kim, S.H., Chun, H., Kim, S.J., Ahn, J., Park, Y.J., 2013. Modulation of molecular hybridization and charge screening in a carbon nanotube network channel using the electrical pulse method. Lab on a Chip 13(18), 3755-3763.
Xiang, Y., Lu, Y., 2012. Portable and Quantitative Detection of Protein Biomarkers and Small Molecular Toxins Using Antibodies and Ubiquitous Personal Glucose Meters. Analytical Chemistry 84(9), 4174-4178.
Yuan, H., Shimotani, H., Ye, J., Yoon, S., Aliah, H., Tsukazaki, A., Kawasaki, M., Iwasa, Y., 2010. Electrostatic and Electrochemical Nature of Liquid-Gated Electric-Double-Layer Transistors Based on Oxide Semiconductors. Journal of the American Chemical Society 132(51), 18402-18407.
Zeggai, O., Ould-Abbas, A., Bouchaour, M., Zeggai, H., Sahouane, N., Madani, M., Trari, D., Boukais, M., Chabane-Sari, N.E., 2014. Biological detection by high electron mobility transistor (HEMT) based AlGaN/GaN. physica status solidi (c) 11(2), 274-279.
Zhang, X., Wang, W., Yu, Y., Wang, Q., Yang, Y., Wen, D., Li, F., Ouyang, N., Kan, L., Suo, M., Yan, H., 2013. BNP and NT-proBNP Assays for Heart-Failure Diagnosis in Patients With Cerebral Infarction. Laboratory Medicine 44(1), 46-50.
Zheng, G., Patolsky, F., Cui, Y., Wang, W.U., Lieber, C.M., 2005. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nature Biotechnology 23, 1294.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *