帳號:guest(18.191.71.190)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):胡鈺堂
作者(外文):Hu, Yu-Tang
論文名稱(中文):可調變反射式電漿子濾光結構之應變機制優化
論文名稱(外文):Straining Mechanism Optimization for Tunable Filter Based on Reflective Surface Plasmon Resonance
指導教授(中文):羅丞曜
指導教授(外文):Lo, Cheng-Yao
口試委員(中文):陳榮順
陳政寰
口試委員(外文):Chen, Rong-Shun
Chen, Cheng-Huan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:104035519
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:95
中文關鍵詞:表面電漿共振熱壓奈米轉印濾光調變
外文關鍵詞:Surface plasmon resonanceThermal nanoimprintTunable color filtering
相關次數:
  • 推薦推薦:0
  • 點閱點閱:490
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究主旨在於開發在塑膠基板上製作週期性排列的金屬奈米結構之製程,並透過對基板施以等向性拉伸的方式改變奈米金屬結構的排列週期、調變奈米金屬的表面電漿共振,達成單一初始表面電漿子共振(Surface Plasmon Resonance, SPR)濾光設計卻支援多種濾光效果的目標。本研究基於前期研究之設計基礎,開發電子束微影、真空鍍膜、熱壓轉印及彈性形變等製程,驗證以應變切換SPR 濾光效果的可行性。結果證明在5%應變下,小週期的藍色SPR 逐漸切換成綠色SPR,證實提案設計使用於濾光片及顯示系統之應用。
此外,本研究亦詳細評估了等向應變於有機材料在非等向拉伸時之範圍,並以決定係數觀察SPR 之週期變化,最終量化等向應變之區域,除了說明SPR 的應用範圍之外,亦暗示了應變對SPR 濾光色純度之貢獻。
This research presents a method for transferring nanostructures to
plastic substrate via thermal imprint, and by providing isotropic strain on the plastic substrate to modify the patterning pitch of the periodic nanostructures on top, switching of SPR color performance with a single initial structure design was successfully demonstrated. This research inherits the design basis from previous works, and developed the complete process of e-beam lithography, vacuum metal deposition, thermal imprinting, and isotropic deformation technique. Finally proving the possibility of tunable SPR color filtering, by demonstrating the switching of the initial periodical structure that shows blue SPR, into green SPR with 5% strain, hinting at the application for color filters and display systems.
Additional analysis of isotropic strain boundary when a plastic substrate is under anisotropic strain is also investigated. The coefficient of determination was used to observe the patterning period of SPR structures, defining the outermost location of isotropic strain region and providing the IV application area limit of SPR color filter. This analysis also hints at the effects of strain on SPR color purity.
摘要........................................I
Abstract .................................III
致謝 .......................................V
目錄 .....................................VII
圖目錄 ....................................XI
符號表 ....................................XV
第一章 緒論 ................................1
1.1 前言 ...................................1
1.2 電漿子濾色 .............................2
1.3 等向性拉伸技術 .........................3
1.4 研究動機 ...............................4
1.5 文獻探討 ...............................5
1.5.1 電漿子濾色研究 .......................5
1.5.2 平面等向拉伸研究 .....................6
第二章 理論與設計 .........................21
2.1 表面電漿子 ............................21
2.1.1 表面電漿子理論 ......................21
2.1.2 金屬結構設計 ........................23
2.2 電漿子材料分析 ........................24
2.2.1 德汝德金屬模型(Drude Model) .........24
2.2.2 電漿子頻率與頻寬 ....................25
2.3 奈米轉印 ..............................26
2.4 二維拉伸分析 ..........................27
2.4.1 力學分析模型 ........................27
2.4.2 等向環狀拉伸邊界 ....................28
第三章 實驗製程 ...........................47
3.1 電子束微影 ............................47
3.1.1 電子束光阻 ..........................48
3.1.2 電子散射 (Electron Scattering) ......50
3.2 金屬鍍膜 ..............................51
3.2.1 射頻濺鍍系統 ........................51
3.2.2 電子槍蒸鍍 ..........................51
3.3 熱壓轉印 ..............................52
3.4 拉伸系統 ..............................53
第四章 量測結果與分析 .....................73
4.1 量測系統 ..............................73
4.1.1 掃描式電子顯微鏡 ....................73
4.1.2 顯微鏡光譜儀 ........................74
4.2 熱壓轉印結果 ..........................74
4.3 濾光顏色效果 ..........................75
4.3.1 轉印前之電漿子顏色 ..................75
4.3.2 拉伸前後之電漿子顏色 ................76
第五章 結論與未來展望 .....................89
5.1 結論 ..................................89
5.2 未來展望 ..............................90
參考文獻 ..................................91
發表清單 ..................................95
[1] Harris R. Miller, “Color Filter Array for CCD and CMOS Image Sensors Using a Chemically Amplified Thermally Cured Pre-dyed Positive-Tone Photoresist for 365-nm Lithography,” Proc. SPIE 3678, Advances in Resist Technology and Processing XVI, 11 June 1999.
[2] Yi-Pai Huang, Fang-Cheng Lin, and Han-Ping D. Shieh, “Eco-Displays: The Color LCD's Without Color Filters and Polarizers,” Journal if Display Technology, Vol. 7, No. 12, December 2011.
[3] Xing-Fei He and Frank Fang, “Flat-Panel Color Filter Inspection,” Vision Systems Design, 1 May 2011.
[4] Mu-Hsing Wu, Chiou-Shann Fuh, and Hsien-Yei Chen, “Defect Inspection and Analysis of Color Filter Panel,” Inspection of Color Filter Panel, Vol. 6, No. 2, 2000.
[5] Xing-Fei He and Frank Fang, “Line Scan Cameras Enable High Speed Inspection of Color Filters within Flat-Panel Display,” Teledyne DALSA, Waterloo, Canada, 2011.
[6] Daniel Franklin, Yuan Chen, Abraham Vazquez-Guardado, Sushrut Modak, Javaneh Boroumand, Daming Xu, Shin-Tson Wu, and Debashis Chanda, “Polarization-Independent Actively Tunable Colour Generation on Imprinted Plasmonic Surfaces,” Nature Communications [6:7337], June 2015.
[7] Hailong Hu, Huigao Duan, Joel K. W. Yang, and Ze Xiang Shen, “ Plasmon-Modulated Photoluminescence of Individual Gold Nanostructures,” ACS Nano, Vol. 6, No. 11, 2012.
[8] Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS Image Sensor Integrated with Plasmonic Colour Filters,” Plasmonics, Vol.7, December 2012.
[9] Yinghong Gu, Lei Zhang, Joel K. W. Yang, Swee Ping Yeo, and Cheng-Wei Qiu, “Color Generation via Subwavelength Plasmonic Nanostructures,” Nanoscale, Vol. 7, March 2015.
[10] Jian-Wei Hong, Chung-Yuan Yang, and Cheng-Yao Lo, “Critical Dimension and Pattern Size Enhancement Using Pre-Strained Lithography,” Applied Physics Letters, Vol. 105, October 2014.
[11] Shih-Chun Lo, “Theoretical Design of Surface Plasmon Resonance Display Realized by MEMS,” National Tsing Hua University, Hsinchu, Taiwan, 2017.
[12] Beibei Zeng, Yongkang Gao and Filbert J. Bartoli, “Ultrathin Nanostructured Metals for Highly Transmissive Plasmonic Subtractive Color Filters,” Scientific Reports, Vol. 3, October 2013.
[13] Xiaoyang Duan, Simon Kamin, and Na Liu, “Dynamic Plasmonic Colour Display,” Nature Communications 8, February 2017.
[14] Soroosh Daqiqeh Rezaei, Jinfa Ho, Ray Jia Hong Ng, Seeram Ramakrisshna, and Joel K. W. Yang, “On the Correlation of Absorption Cross-Section with Plasmonic Color Generation,” Optics Express, Vol. 25, No. 22, October 2017.
[15] Stafan A. Maier, “Plasmonics: Fundamentals amd Applications,” New York: Springer, 2007.
[16] Anatoly V. Zayats, Igor I. Smolyaninov, and Alexei A. Maradudin, “Nano-Optics of Surface Plasmon Polaritons,” Physics Reports, 408, 2005.
[17] Eliza Hutter and Janos H. Fendler, “Exploitation of Lacalized Surface Plasmon Resonance,” Advanced Materials, Vol. 16, No. 19, October 2004.
[18] Ellen J. Zeman, and George C. Schatz, “An Accurate Electromagnetic Theory Study of Surface Enhancement Factors for Ag, Au, Cu, Li, Na, Al, Ga, In, Zn, and Cd,” The Journal of Physical Chemistry, 91(3), January 1987.
[19] Andrew Carlson, Audrey M. Bowen, Yonggang Huang, Ralph G. Nuzzo, and John A. Rogers, “Transfer Printing Techniques for Materials Assembly and Micro/Nanodevice Fabrication,” Advanced Materials, 24, 2014.
[20] Jae Won Jeong, Se Ryeun Yang, Yoon Hyung Hur, Seong Wan Kim, Kwang Min Baek, Soonmin Yim, Hyun-Ik Jang, Jae Hong Park, Seung Yong Lee, Chong-Ook Park, and Yeon Sik Jung, “High-Resolution Nanotransfer Printing Applicable to Diverse Surfaces via Interface-Targeted Adhesion Switching,” Nature Communications, [5:5387], November 2014.
[21] Jong-Woo Kim, Ki-Yeon Yang, Sung-Hoon Hong, and Heon Lee, “Formation of Au Nano-Patterns on Various Substrates Using Simplified Nano-Transfer Printing Method,” Applied Surface Science, Vol. 254, June 2008.
[22] Matthew A. Meitl, Zheng-Tao Zhu, Vipan Kumar, Keon Jae Lee, Xue Feng, Yonggang Y. Huang, Ilesanmi Adesida, Ralph G. Nuzzo, and John A. Rogers, “Transfer Printing by Kinetic Control of Adhesion to an Elastomeric Stamp,” Nature Materials, Vol. 5, January 2006.
[23] M. J. Rooks, E. Kratschmer, and R. Viswanathan, “Low Stress Development of Poly(methylmethacrylate) for High Aspect Ratio Structures,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, Vol. 20, October 2002.
[24] Shazia Yasin, D. G. Hasko, and H. Ahmed, “Comparison of MIBK/IPA and Water/IPA as PMMA Developers for Electron Beam Nanolithography,” Microelectronic Engineering, Vol. 61-62, July 2002.
[25] Mohammad Ali Mohammad, Mustafa Muhammad, Steven K. Dew, and Maria Stepanova, “Fundamentals of Electron Beam Exposure and Development,” Nanofabrication: Techniques and principles, 2012.
[26] Yoshiaki Nishijima, Lorenzo Rosa, and Saulius Juodkazis, “Surface Plasmon Resonances in Periodic and Random Patterns of Gold Nano-Disks for Broadband Light Harvesting,” Optics Express, Vol. 20, No. 10, May 2012.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *