|
[1] Eastman, L.F. and U.K. Mishra, The toughest transistor yet [GaN transistors]. IEEE spectrum, 2002. 39(5): p. 28-33. [2] Kong, Y., et al., Two-dimensional electron gas densities in AlGaN/AlN/GaN heterostructures. Applied Physics A: Materials Science & Processing, 2006. 84(1): p. 95-98. [3] Baron, N., GaN-on-Silicon Substrate Patent Investigation. Yole Developpement, 2014. [4] Johnson, W. and E.L. Piner, GaN HEMT technology, in GaN and ZnO-based Materials and Devices. 2012, Springer. p. 209-237. [5] Wang, I., Free-Standing & Bulk GaN Substrates for Laser Diode, LED and Power Electronics 2013 Report . Yole Developpement, 2013. [6] Dadgar, A., et al., Improving GaN‐on‐silicon properties for GaN device epitaxy. physica status solidi (c), 2011. 8(5): p. 1503-1508. [7] Krost, A. and A. Dadgar, GaN-based optoelectronics on silicon substrates. Materials Science and Engineering: B, 2002. 93(1): p. 77-84. [8] Dadgar, A., et al., Metalorganic chemical vapor phase epitaxy of gallium‐nitride on silicon. physica status solidi (c), 2003(6): p. 1583-1606. [9] Zhu, T. and R.A. Oliver, Unintentional doping in GaN. Physical Chemistry Chemical Physics, 2012. 14(27): p. 9558-9573. [10] Kung, P., et al., High quality AIN and GaN epilayers grown on (00⋅ 1) sapphire,(100), and (111) silicon substrates. Applied physics letters, 1995. 66(22): p. 2958-2960. [11] Zang, K., et al., Evolution of AlN buffer layers on Silicon and the effect on the property of the expitaxial GaN film. 2003. [12] Fujisaki, Y., T. Kijima, and H. Ishiwara, High-performance metal–ferroelectric–insulator–semiconductor structures with a damage-free and hydrogen-free silicon–nitride buffer layer. Applied Physics Letters, 2001. 78(9): p. 1285-1287. [13] Nishino, S., J.A. Powell, and H.A. Will, Production of large‐area single‐crystal wafers of cubic SiC for semiconductor devices. Applied Physics Letters, 1983. 42(5): p. 460-462. [14] Takeuchi, T., et al., Growth of single crystalline GaN film on Si substrate using 3C-SiC as an intermediate layer. Journal of crystal growth, 1991. 115(1): p. 634-638. [15] Raghavan, S., et al., Dislocation bending and tensile stress generation in GaN and AlGaN films. Journal of Crystal Growth, 2012. 359: p. 35-42. [16] Perkins, N., et al. Halide vapor phase epitaxy of gallium nitride films on sapphire and silicon substrates. in MRS Proceedings. 1995. Cambridge Univ Press. [17] Watanabe, A., et al., The growth of single crystalline GaN on a Si substrate using AIN as an intermediate layer. Journal of crystal growth, 1993. 128(1-4): p. 391-396. [18] Yang, J., et al., High quality GaN–InGaN heterostructures grown on (111) silicon substrates. Applied physics letters, 1996. 69(23): p. 3566-3568. [19] Kung, P., et al., Lateral epitaxial overgrowth of GaN films on sapphire and silicon substrates. Applied physics letters, 1999. 74(4): p. 570-572. [20] Callister, W.D., Fundamentals of materials science and engineering: an interactive e-text. 2001. [21] Shimura, F., Semiconductor silicon crystal technology. 2012: Elsevier. [22] Jurkschat, K., et al., Onset of slip in silicon containing oxide precipitates. Journal of Applied Physics, 2001. 90(7): p. 3219-3225. [23] Yonenaga, I. and K. Sumino, Influence of oxygen precipitation along dislocations on the strength of silicon crystals. Journal of applied physics, 1996. 80(2): p. 734-738. [24] Hu, S., Dislocation pinning effect of oxygen atoms in silicon. Applied Physics Letters, 1977. 31(2): p. 53-55. [25] Alpass, C., et al., Nitrogen diffusion and interaction with dislocations in single-crystal silicon. Journal of Applied Physics, 2009. 105(1): p. 013519. [26] Yonenaga, I., Nitrogen effects on generation and velocity of dislocations in Czochralski-grown silicon. Journal of applied physics, 2005. 98(2): p. 023517. [27] Wang, G., et al., Mechanical strength of nitrogen-doped silicon single crystal investigated by three-point bending method. Physica B: Condensed Matter, 2001. 308: p. 450-453. [28] Sun, R., T. Xu, and Q. Xue, Effect of Ar+ ion implantation on the nano-mechanical properties and microstructure of single crystal silicon. Applied surface science, 2005. 249(1): p. 386-392. [29] Sun, R., T. Xu, and Q. Xue, Surface modification of single crystal silicon by Ar+ ion implantation and vacuum deposition of amorphous carbon coating. Surface and Coatings Technology, 2006. 200(20): p. 5794-5799. [30] Seo, Y.-J., et al., Analysis of the defect density according to the slurry filter size in the chemical mechanical polishing process. Journal of the Korean Physical Society, 2003. 43(5): p. 798-801. [31] Corbett, J.W., J.P. Karins, and T.Y. Tan, Ion-induced defects in semiconductors. Nuclear Instruments and Methods, 1981. 182: p. 457-476. [32] Cerva, H. and K.H. Küsters, Defect formation in silicon at a mask edge during crystallization of an amorphous implantation layer. Journal of applied physics, 1989. 66(10): p. 4723-4728. [33] Wu, N., D. Sadana, and J. Washburn, Direct evidence of arsenic clustering in high dose arsenic‐implanted silicon. Applied Physics Letters, 1984. 44(8): p. 782-784. [34] Tamura, M., Damage formation and annealing of ion implantation in Si. Materials Science Reports, 1991. 6(4-5): p. 141-214. [35] Kashyap, K., et al., Elimination of strength degrading effects caused by surface microdefect: a prevention achieved by silicon nanotexturing to avoid catastrophic brittle fracture. Scientific reports, 2015. 5. [36] Chen, C.-N., et al., Strengthening for sc-Si solar cells by surface modification with nanowires. Journal of Microelectromechanical Systems, 2011. 20(3): p. 549-551. [37] Kashyap, K., et al. Nanostructured silicon flapping wing with higher strength and low reflectivity for solar powered MEMS aircraft. in 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS). 2014. IEEE. [38] 許育瑋, "六吋高強度屏蔽奈米化矽基板之GaN磊晶可行性驗證,"國立清華大學奈米工程與微系統研究所碩士論文, 2016. [39] Pilkey, W.D. and D.F. Pilkey, Peterson's stress concentration factors. 2008: John Wiley & Sons. [40] Von Mises, R., Mechanics of the ductile form changes of crystals. Zeitschrift Fur Angewandte Mathematik Und Mechanik, 1928. 8: p. 161-185. [41] Goto, H., et al., Wafer defect measuring method and apparatus. 2004, Google Patents. [42] Pei, Z., S. Billingsley, and S. Miura, Grinding induced subsurface cracks in silicon wafers. International Journal of Machine Tools and Manufacture, 1999. 39(7): p. 1103-1116. [43] Geng, X., et al., Fabrication of antireflective layers on silicon using metal-assisted chemical etching with in situ deposition of silver nanoparticle catalysts. Solar Energy Materials and Solar Cells, 2012. 103: p. 98-107. [44] Li, X. and P. Bohn, Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Applied Physics Letters, 2000. 77(16): p. 2572-2574. [45] Bai, F., et al., Metal-assisted homogeneous etching of single crystal silicon: A novel approach to obtain an ultra-thin silicon wafer. Applied Surface Science, 2013. 273: p. 107-110. [46] Huang, Z., et al., Oxidation rate effect on the direction of metal-assisted chemical and electrochemical etching of silicon. The Journal of Physical Chemistry C, 2010. 114(24): p. 10683-10690. [47] Runyan, W.R. and K.E. Bean, Semiconductor integrated circuit processing technology. 1990: Addison Wesley Publishing Company. [48] 彭德軒, "屏蔽式奈米化技術應用於半導體產業之高強度矽基板," 國立清華大學奈米工程與微系統研究所碩士論文, 2015. [49] Mattox, D.M., Handbook of physical vapor deposition (PVD) processing. 2010: William Andrew. [50] Reichelt, K. and X. Jiang, The preparation of thin films by physical vapour deposition methods. Thin Solid Films, 1990. 191(1): p. 91-126. [51] Ziegler, J.F., Ion implantation science and technology. 2012: Elsevier. [52] Sebaai, F., et al. Poly-silicon etch with diluted ammonia: Application to replacement gate integration scheme. in Solid State Phenomena. 2009. Trans Tech Publ. [53] Kobayashi, H., et al., Study of Si etch rate in various composition of SC1 solution. Japanese journal of applied physics, 1993. 32(1A): p. L45. [54] Kim, J., D.-i.D. Cho, and R.S. Muller, Why is (111) silicon a better mechanical material for MEMS, in Transducers’ 01 Eurosensors XV. 2001, Springer. p. 662-665. [55] Yang, J., et al., A new technique for producing large-area as-deposited zero-stress LPCVD polysilicon films: the multipoly process. Journal of Microelectromechanical Systems, 2000. 9(4): p. 485-494. [56] Tada, H., et al., Thermal expansion coefficient of polycrystalline silicon and silicon dioxide thin films at high temperatures. Journal of Applied Physics, 2000. 87(9): p. 4189-4193. [57] Sharpe, W.N., et al. Measurements of Young's modulus, Poisson's ratio, and tensile strength of polysilicon. in Micro Electro Mechanical Systems, 1997. [58] Jansen, F., et al., Thermal expansion and elastic properties of plasma‐deposited amorphous silicon and silicon oxide films. Applied physics letters, 1987. 50(16): p. 1059-1061. [59] Howe, R. and R. Muller, Stress in polycrystalline and amorphous silicon thin films. Journal of Applied Physics, 1983. 54(8): p. 4674-4675. [60] Street, R., Large area image sensor arrays. Technology and Applications of Amorphous Silicon. 2000, Springer. p. 147-221. [61] Zhang, X., et al., Residual-stress relaxation in polysilicon thin films by high-temperature rapid thermal annealing. Sensors and Actuators A: Physical, 1998. 64(1): p. 109-115.
|