帳號:guest(3.136.25.106)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):曹凱揚
作者(外文):Tsao, Kai-Yang
論文名稱(中文):多晶/非晶矽屏蔽奈米結構應用於氮化鎵磊晶驗證之強化矽基板
論文名稱(外文):High Strength Si(111) Substrate with Poly-Si/α-Si Sealing Nanotexture for GaN
指導教授(中文):葉哲良
指導教授(外文):Yeh, Jer-Liang
口試委員(中文):林育芸
侯帝光
徐文慶
口試委員(外文):Lin, Yu-Yun
Hou, Ti-Kuang
Hsu, Wen-Ching
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:104035518
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:100
中文關鍵詞:應力強化奈米結構磊晶電子槍蒸鍍系統
外文關鍵詞:stress strengtheningnanotextureepitaxye-gun
相關次數:
  • 推薦推薦:0
  • 點閱點閱:347
  • 評分評分:*****
  • 下載下載:3
  • 收藏收藏:0
本研究利用電子槍蒸鍍系統(E-gun system)沉積多晶矽(poly-Si)與高密度電漿化學氣相沉積系統(HDP-CVD)沉積非晶矽薄膜製作保護層於本實驗室已證明能強化基板強度之奈米結構上,藉以保護奈米結構並且降低基板翹曲。
利用金屬輔助化學蝕刻(Metal-Assisted Chemical Etching)而蝕刻出之奈米結構能分散矽基板之應力,並提升基板之強度,而此優異的特點能解決矽基板不能承受高功率原件材料氮化鎵(GaN)在磊晶時因晶格不匹配而產生過大應力造成破片的疑慮。但因奈米結構約深4 μm、寬100 nm之高深寬比結構容易附著微粒造成後續製程與機台之汙染,所以CVD (Chemical Vapor Deposition)以一複合矽/二氧化矽材料覆蓋之,其中二氧化矽之晶格常數小於矽而導致超過15 μm甚至50 μm之翹曲,且再後續製程會被清洗液腐蝕而導致附蓋保護層剝落,對正面溫度敏感度高之氮化鎵磊晶薄膜造成直接影響,影響面積超過50%。
本實驗利用E-gun system以物理氣相沉積(Physical Vapor Deposition)之方式沉積多晶矽,其後再以HDP-CVD沉積非晶矽保護薄膜,大幅降低翹曲度最低至4 μm並且不會有氧化物影響磊晶之性質。以此實驗提供一新型基板於氮化鎵磊晶,期望能降低破片率提升產能並精進磊晶品質。
In this study we use E-gun deposition system to deposit poly-Si thin film and HDP-CVD deposited amorphous silicon as a protection layer on the nanotexture which our group has already proved can strengthen the Silicon substrate.
The protection layer can provide that the nanotexture not been damaged and lower the bow of the substrate. We use Metal-Assisted Chemical Etching method to create the nanotexture which disperse the stress on the substrate which can elevate the strength of the wafer to endure the high stress caused by the epitaxy layer of GaN for high power devices. With the nanotexture created by the Metal-Assisted Chemical Etching we can save the wafer from cracking, but due to the high aspect ratio (4 μm high and width for 100 nm) of the nanotexture it may catch particles which is contamination for the later process and facilities. We make a composite material by chemical vapor deposition in order to protect the nanotexture and prevent the contamination problems, but it still exist many flaw such as oxide contamination or over bowing from 15 μm to over 50 μm.
This experiment by using physical vapor deposition by E-gun system and HDP-CVD system, we can derive a poly-Si/a-Si layer which reduce the over bow to 4 μm and will not influence the epitaxy process by oxide. This experiment provide a new strengthening substrate which can lower the cracking rate for a higher productivity.
圖目錄 vi
表目錄 x
第一章 前言 1
1.1 研究背景 1
1.2氮化物成長於矽基板之簡介 5
1.3提升氮化鎵成長於矽基板品質之應力消彌技術 8
1.4基板強度提生技術 11
1.4.1常見之矽基材強化方法 11
1.4.2矽基板之奈米化強化技術 17
1.5研究動機 22
1.6論文架構 24
第二章 理論與原理 25
2.1脆性材料力學 25
2.1.1 脆性材料之抗折強度 26
2.1.2 奈米強化應力分散理論 28
2.2製程理論 34
2.2.1金屬輔助化學蝕刻技術 34
2.2.2物理氣相沉積保護層 38
2.2.3 高密度電漿化學氣相沉積系統(High Density Plasma-enhanced Chemical Vapor Deposition) 43
第三章 實驗規劃 45
3.1實驗設計與流程 45
3.2以金屬輔助化學蝕刻製備矽(111)奈米結構 50
3.3保護層材料之優化與製備 51
第四章 實驗結果 53
4.1 保護層材料之選擇與沉積 53
4.2 抗腐蝕奈米結構保護層 63
4.3 交叉汙染量測 66
4.4 晶邊奈米結構之移除 71
4.5 強度量測 75
第五章 結論 81
第六章 未來工作 83
附錄 94
附錄A. 掃描式電子顯微鏡 94
附錄B. 高真空型掃描試探針顯微鏡 95
附錄C. 晶圓翹曲量測儀 97
附錄D. SIMS偵測原信號強度原始數值陳列 99
附錄E.近年奈米結構強化程度比較 100
[1] Eastman, L.F. and U.K. Mishra, The toughest transistor yet [GaN transistors]. IEEE spectrum, 2002. 39(5): p. 28-33.
[2] Kong, Y., et al., Two-dimensional electron gas densities in AlGaN/AlN/GaN heterostructures. Applied Physics A: Materials Science & Processing, 2006. 84(1): p. 95-98.
[3] Baron, N., GaN-on-Silicon Substrate Patent Investigation. Yole Developpement, 2014.
[4] Johnson, W. and E.L. Piner, GaN HEMT technology, in GaN and ZnO-based Materials and Devices. 2012, Springer. p. 209-237.
[5] Wang, I., Free-Standing & Bulk GaN Substrates for Laser Diode, LED and Power Electronics 2013 Report . Yole Developpement, 2013.
[6] Dadgar, A., et al., Improving GaN‐on‐silicon properties for GaN device epitaxy. physica status solidi (c), 2011. 8(5): p. 1503-1508.
[7] Krost, A. and A. Dadgar, GaN-based optoelectronics on silicon substrates. Materials Science and Engineering: B, 2002. 93(1): p. 77-84.
[8] Dadgar, A., et al., Metalorganic chemical vapor phase epitaxy of gallium‐nitride on silicon. physica status solidi (c), 2003(6): p. 1583-1606.
[9] Zhu, T. and R.A. Oliver, Unintentional doping in GaN. Physical Chemistry Chemical Physics, 2012. 14(27): p. 9558-9573.
[10] Kung, P., et al., High quality AIN and GaN epilayers grown on (00⋅ 1) sapphire,(100), and (111) silicon substrates. Applied physics letters, 1995. 66(22): p. 2958-2960.
[11] Zang, K., et al., Evolution of AlN buffer layers on Silicon and the effect on the property of the expitaxial GaN film. 2003.
[12] Fujisaki, Y., T. Kijima, and H. Ishiwara, High-performance metal–ferroelectric–insulator–semiconductor structures with a damage-free and hydrogen-free silicon–nitride buffer layer. Applied Physics Letters, 2001. 78(9): p. 1285-1287.
[13] Nishino, S., J.A. Powell, and H.A. Will, Production of large‐area single‐crystal wafers of cubic SiC for semiconductor devices. Applied Physics Letters, 1983. 42(5): p. 460-462.
[14] Takeuchi, T., et al., Growth of single crystalline GaN film on Si substrate using 3C-SiC as an intermediate layer. Journal of crystal growth, 1991. 115(1): p. 634-638.
[15] Raghavan, S., et al., Dislocation bending and tensile stress generation in GaN and AlGaN films. Journal of Crystal Growth, 2012. 359: p. 35-42.
[16] Perkins, N., et al. Halide vapor phase epitaxy of gallium nitride films on sapphire and silicon substrates. in MRS Proceedings. 1995. Cambridge Univ Press.
[17] Watanabe, A., et al., The growth of single crystalline GaN on a Si substrate using AIN as an intermediate layer. Journal of crystal growth, 1993. 128(1-4): p. 391-396.
[18] Yang, J., et al., High quality GaN–InGaN heterostructures grown on (111) silicon substrates. Applied physics letters, 1996. 69(23): p. 3566-3568.
[19] Kung, P., et al., Lateral epitaxial overgrowth of GaN films on sapphire and silicon substrates. Applied physics letters, 1999. 74(4): p. 570-572.
[20] Callister, W.D., Fundamentals of materials science and engineering: an interactive e-text. 2001.
[21] Shimura, F., Semiconductor silicon crystal technology. 2012: Elsevier.
[22] Jurkschat, K., et al., Onset of slip in silicon containing oxide precipitates. Journal of Applied Physics, 2001. 90(7): p. 3219-3225.
[23] Yonenaga, I. and K. Sumino, Influence of oxygen precipitation along dislocations on the strength of silicon crystals. Journal of applied physics, 1996. 80(2): p. 734-738.
[24] Hu, S., Dislocation pinning effect of oxygen atoms in silicon. Applied Physics Letters, 1977. 31(2): p. 53-55.
[25] Alpass, C., et al., Nitrogen diffusion and interaction with dislocations in single-crystal silicon. Journal of Applied Physics, 2009. 105(1): p. 013519.
[26] Yonenaga, I., Nitrogen effects on generation and velocity of dislocations in Czochralski-grown silicon. Journal of applied physics, 2005. 98(2): p. 023517.
[27] Wang, G., et al., Mechanical strength of nitrogen-doped silicon single crystal investigated by three-point bending method. Physica B: Condensed Matter, 2001. 308: p. 450-453.
[28] Sun, R., T. Xu, and Q. Xue, Effect of Ar+ ion implantation on the nano-mechanical properties and microstructure of single crystal silicon. Applied surface science, 2005. 249(1): p. 386-392.
[29] Sun, R., T. Xu, and Q. Xue, Surface modification of single crystal silicon by Ar+ ion implantation and vacuum deposition of amorphous carbon coating. Surface and Coatings Technology, 2006. 200(20): p. 5794-5799.
[30] Seo, Y.-J., et al., Analysis of the defect density according to the slurry filter size in the chemical mechanical polishing process. Journal of the Korean Physical Society, 2003. 43(5): p. 798-801.
[31] Corbett, J.W., J.P. Karins, and T.Y. Tan, Ion-induced defects in semiconductors. Nuclear Instruments and Methods, 1981. 182: p. 457-476.
[32] Cerva, H. and K.H. Küsters, Defect formation in silicon at a mask edge during crystallization of an amorphous implantation layer. Journal of applied physics, 1989. 66(10): p. 4723-4728.
[33] Wu, N., D. Sadana, and J. Washburn, Direct evidence of arsenic clustering in high dose arsenic‐implanted silicon. Applied Physics Letters, 1984. 44(8): p. 782-784.
[34] Tamura, M., Damage formation and annealing of ion implantation in Si. Materials Science Reports, 1991. 6(4-5): p. 141-214.
[35] Kashyap, K., et al., Elimination of strength degrading effects caused by surface microdefect: a prevention achieved by silicon nanotexturing to avoid catastrophic brittle fracture. Scientific reports, 2015. 5.
[36] Chen, C.-N., et al., Strengthening for sc-Si solar cells by surface modification with nanowires. Journal of Microelectromechanical Systems, 2011. 20(3): p. 549-551.
[37] Kashyap, K., et al. Nanostructured silicon flapping wing with higher strength and low reflectivity for solar powered MEMS aircraft. in 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS). 2014. IEEE.
[38] 許育瑋, "六吋高強度屏蔽奈米化矽基板之GaN磊晶可行性驗證,"國立清華大學奈米工程與微系統研究所碩士論文, 2016.
[39] Pilkey, W.D. and D.F. Pilkey, Peterson's stress concentration factors. 2008: John Wiley & Sons.
[40] Von Mises, R., Mechanics of the ductile form changes of crystals. Zeitschrift Fur Angewandte Mathematik Und Mechanik, 1928. 8: p. 161-185.
[41] Goto, H., et al., Wafer defect measuring method and apparatus. 2004, Google Patents.
[42] Pei, Z., S. Billingsley, and S. Miura, Grinding induced subsurface cracks in silicon wafers. International Journal of Machine Tools and Manufacture, 1999. 39(7): p. 1103-1116.
[43] Geng, X., et al., Fabrication of antireflective layers on silicon using metal-assisted chemical etching with in situ deposition of silver nanoparticle catalysts. Solar Energy Materials and Solar Cells, 2012. 103: p. 98-107.
[44] Li, X. and P. Bohn, Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Applied Physics Letters, 2000. 77(16): p. 2572-2574.
[45] Bai, F., et al., Metal-assisted homogeneous etching of single crystal silicon: A novel approach to obtain an ultra-thin silicon wafer. Applied Surface Science, 2013. 273: p. 107-110.
[46] Huang, Z., et al., Oxidation rate effect on the direction of metal-assisted chemical and electrochemical etching of silicon. The Journal of Physical Chemistry C, 2010. 114(24): p. 10683-10690.
[47] Runyan, W.R. and K.E. Bean, Semiconductor integrated circuit processing technology. 1990: Addison Wesley Publishing Company.
[48] 彭德軒, "屏蔽式奈米化技術應用於半導體產業之高強度矽基板," 國立清華大學奈米工程與微系統研究所碩士論文, 2015.
[49] Mattox, D.M., Handbook of physical vapor deposition (PVD) processing. 2010: William Andrew.
[50] Reichelt, K. and X. Jiang, The preparation of thin films by physical vapour deposition methods. Thin Solid Films, 1990. 191(1): p. 91-126.
[51] Ziegler, J.F., Ion implantation science and technology. 2012: Elsevier.
[52] Sebaai, F., et al. Poly-silicon etch with diluted ammonia: Application to replacement gate integration scheme. in Solid State Phenomena. 2009. Trans Tech Publ.
[53] Kobayashi, H., et al., Study of Si etch rate in various composition of SC1 solution. Japanese journal of applied physics, 1993. 32(1A): p. L45.
[54] Kim, J., D.-i.D. Cho, and R.S. Muller, Why is (111) silicon a better mechanical material for MEMS, in Transducers’ 01 Eurosensors XV. 2001, Springer. p. 662-665.
[55] Yang, J., et al., A new technique for producing large-area as-deposited zero-stress LPCVD polysilicon films: the multipoly process. Journal of Microelectromechanical Systems, 2000. 9(4): p. 485-494.
[56] Tada, H., et al., Thermal expansion coefficient of polycrystalline silicon and silicon dioxide thin films at high temperatures. Journal of Applied Physics, 2000. 87(9): p. 4189-4193.
[57] Sharpe, W.N., et al. Measurements of Young's modulus, Poisson's ratio, and tensile strength of polysilicon. in Micro Electro Mechanical Systems, 1997.
[58] Jansen, F., et al., Thermal expansion and elastic properties of plasma‐deposited amorphous silicon and silicon oxide films. Applied physics letters, 1987. 50(16): p. 1059-1061.
[59] Howe, R. and R. Muller, Stress in polycrystalline and amorphous silicon thin films. Journal of Applied Physics, 1983. 54(8): p. 4674-4675.
[60] Street, R., Large area image sensor arrays. Technology and Applications of Amorphous Silicon. 2000, Springer. p. 147-221.
[61] Zhang, X., et al., Residual-stress relaxation in polysilicon thin films by high-temperature rapid thermal annealing. Sensors and Actuators A: Physical, 1998. 64(1): p. 109-115.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *