帳號:guest(3.145.51.115)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳彥文
作者(外文):Chen, Yen-Wen
論文名稱(中文):以氮化鋁鎵/氮化鎵製成之高載子遷移率電晶體電雙層結構直接檢測心血管疾病生物指標
論文名稱(外文):Cardiovascular Disease Biomarkers Detection with Electric-Double Layer AlGaN/GaN High Electron Mobility Transistor (HEMT) in High Ionic Strength Solution
指導教授(中文):王玉麟
指導教授(外文):Wang, Yu-Lin
口試委員(中文):陳致真
李國賓
郭哲來
田禮嘉
口試委員(外文):Chen, Chih-Chen
Lee, Gwo-Bin
Kuo, Jer-Lai
Tien, Li-Chia
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:104035516
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:82
中文關鍵詞:一次性感測器
外文關鍵詞:Debye lengthDNAmiR-126
相關次數:
  • 推薦推薦:0
  • 點閱點閱:51
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
本研究於高生理鹽濃度1倍PBS下檢測心血管疾病指標,我們選定miR-126、miR-21、miR-208a及CRP作為我們心血管疾病的檢測指標。在本實驗中,AlGaN/GaN的HEMT被用來作為生物感測器的元件。以新的結構製成的HEMT元件結構導入了界面電雙層的機制,使得它作為生物感測器還能擁有極高的靈敏度及極低的偵測極限。此種結構也可解決長期困擾FET生物感測器的Debye length的問題,得以在高鹽濃度下偵測到生物分子,在這篇研究中也作了系統性的探討。為了驗證機制,我們挑選了miR-126的DNA序列作為待測物,並在感測器的閘極金電極上接上互補的DNA序列,藉以抓住目標待測物。確認感測器在DNA感測的極限達到1fM後,在TE buffer 調配的不同濃度miR-126、miR-21及miR-208a之RNA序列便接著作為感測物,直接量測RNA的結果也帶來可觀穩定的電荷上升趨勢。最後,晶片上也可透過植上aptamer序列來抓取其專一的CRP蛋白質,透過相同的量測方法,CRP在人體血清中的偵測極限為0.21 mg/L,相較於業界標準的機台極限0.2 mg/L來說相當接近。
In this research, the direct detection of DNA, RNA and proteins in physiological salt concentration by FET based biosensor has been investigated systematically. For the CVD biomarkers, miR-126, miR-21, miR-208a and CRP have been chosen. We have introduced a novel biosensor structure which can provide promising result with low detection limit and high resolution. The new biosensor structure with the electric-double layer structure can solve the Debye length problem which has been existed in FET sensors for years. The FET made by AlGaN/GaN HEMT having high transconductance gain, can significantly improve the S/N ratio and sensitivity. The sensor has shown its low detection limit of 1fM in DNA detection initially. Then, with the six, two and one mismatched base of DNA signal comparison, the specificity of the sensor is also proven. Furthermore, the three miR-126, miR-21 and miR208a RNA CVD biomarkers samples in TE buffer are also measured in different concentrations. The calibration curves of the three RNA sequences are all with appreciable increasing trend in total charge. Finally, the CRP quantitatively detection is also demonstrated in low concentrations and get the extremely low detection limit of 0.21 mg/L in human serum samples.
Chapter 1 Introduction 10

1.1 Motivation 10

Chapter 2 Literature Review 12

2.1 Cardiovascular disease (CVD) 12
2.1.1 C-reactive protein (CRP) as the CVD biomarker 14
2.1.2 miRNA as the CVD biomarker 16
2.2 Field effect transistor biosensor 17
2.2.1 AlGaN/GaN HEMT as a biosensor 19
2.3 Electric-double layer structure and Debye length 22
2.4 DNA detection method comparison 25
2.5 DNA thermodynamics 27
2.5.1 Melting temperature and Gibbs free energy 28
2.5.2 Binding ratio 32
Chapter 3 Experimental 33
3.1 HEMT fabrication 33
3.2 Aptamer immobilization 35
3.3 DNA probe immobilization 36
3.4 Measurement method 38
3.5 Measurement process 39

Chapter 4 results and discussion 42

4.1 Sensor mechanism illustration 42
4.2 miRNA-126 DNA sequences sensing 49
4.3 Probe specificity measurement 53
4.3.1 Six-base mismatch 53
4.3.2 Two-base mismatch 57
4.3.3 One-base mismatch 60
4.4 Sensor reuse experiment 63
4.5 miR-126 RNA sample detection 65
4.6 miR-21 RNA sample detection 68
4.7 miR-208a RNA sample detection 70
4.8 CRP samples detection 72

Chapter 5 Conclusion 75

Chapter 6 Reference 77

[1] H. C. McGill, C. A. McMahan, and S. S. Gidding, "Preventing heart disease in the 21st century implications of the pathobiological determinants of atherosclerosis in youth (PDAY) study," Circulation, vol. 117, pp. 1216-1227, 2008.
[2] M. Naghavi, H. Wang, R. Lozano, A. Davis, X. Liang, M. Zhou, et al., "Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013," Lancet, vol. 385, pp. 117-171, 2015.
[3] J. A. Finegold, P. Asaria, and D. P. Francis, "Mortality from ischaemic heart disease by country, region, and age: statistics from World Health Organisation and United Nations," International journal of cardiology, vol. 168, pp. 934-945, 2013.
[4] R. S. Vasan, "Biomarkers of cardiovascular disease molecular basis and practical considerations," Circulation, vol. 113, pp. 2335-2362, 2006.
[5] S. Koenig, C. Porte, M. Solé, and J. Sturve, "Biliary PAH and alkylphenol metabolites, biomarker enzyme activities, and gene expression levels in the deep-sea fish Alepocephalus rostratus," Environmental science & technology, vol. 47, pp. 2854-2861, 2013.
[6] S. Krishnan, V. Mani, D. Wasalathanthri, C. V. Kumar, and J. F. Rusling, "Attomolar detection of a cancer biomarker protein in serum by surface plasmon resonance using superparamagnetic particle labels," Angewandte Chemie International Edition, vol. 50, pp. 1175-1178, 2011.
[7] E. Gormally, E. Caboux, P. Vineis, and P. Hainaut, "Circulating free DNA in plasma or serum as biomarker of carcinogenesis: practical aspects and biological significance," Mutation Research/Reviews in Mutation Research, vol. 635, pp. 105-117, 2007.
[8] P. Bergveld, "The development and application of FET-based biosensors," Biosensors, vol. 2, pp. 15-33, 1986.
[9] E. Stern, R. Wagner, F. J. Sigworth, R. Breaker, T. M. Fahmy, and M. A. Reed, "Importance of the Debye screening length on nanowire field effect transistor sensors," Nano letters, vol. 7, pp. 3405-3409, 2007.
[10] M. Naghavi, H. Wang, R. Lozano, A. Davis, X. Liang, M. Zhou, et al., "Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013," Lancet, vol. 385, pp. 117-171, 2015.
[11] V. L. Feigin, M. H. Forouzanfar, R. Krishnamurthi, G. A. Mensah, M. Connor, D. A. Bennett, et al., "Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study 2010," The Lancet, vol. 383, pp. 245-255, 2014.
[12] S. V. Dean, Z. S. Lassi, A. M. Imam, and Z. A. Bhutta, "Preconception care: nutritional risks and interventions," Reproductive health, vol. 11, p. 1, 2014.
[13] N. Rifai and P. M. Ridker, "High-sensitivity C-reactive protein: a novel and promising marker of coronary heart disease," Clinical chemistry, vol. 47, pp. 403-411, 2001.
[14] Y. Michowitz, Y. Arbel, D. Wexler, D. Sheps, O. Rogowski, I. Shapira, et al., "Predictive value of high sensitivity CRP in patients with diastolic heart failure," International journal of cardiology, vol. 125, pp. 347-351, 2008.
[15] D. M. Lloyd-Jones, K. Liu, L. Tian, and P. Greenland, "Narrative Review: Assessment of C-Reactive Protein in Risk Prediction for Cardiovascular DiseaseC-Reactive Protein and Risk for Cardiovascular Disease," Annals of internal medicine, vol. 145, pp. 35-42, 2006.
[16] J. Aronson, "Biomarkers and surrogate endpoints," British journal of clinical pharmacology, vol. 59, pp. 491-494, 2005.
[17] J. A. de Lemos, D. A. Morrow, J. H. Bentley, T. Omland, M. S. Sabatine, C. H. McCabe, et al., "The prognostic value of B-type natriuretic peptide in patients with acute coronary syndromes," New England Journal of Medicine, vol. 345, pp. 1014-1021, 2001.
[18] J. Layland, R. J. Solaro, and A. M. Shah, "Regulation of cardiac contractile function by troponin I phosphorylation," Cardiovascular research, vol. 66, pp. 12-21, 2005.
[19] M. B. Pepys and G. M. Hirschfield, "C-reactive protein: a critical update," The Journal of clinical investigation, vol. 111, pp. 1805-1812, 2003.
[20] W. S. Tillett and T. Francis, "Serological reactions in pneumonia with a non-protein somatic fraction of pneumococcus," The Journal of experimental medicine, vol. 52, pp. 561-571, 1930.
[21] E. M. Small, R. J. Frost, and E. N. Olson, "MicroRNAs add a new dimension to cardiovascular disease," Circulation, vol. 121, pp. 1022-1032, 2010.
[22] A. S. M. Sayed, K. Xia, U. Salma, T. Yang, and J. Peng, "Diagnosis, prognosis and therapeutic role of circulating miRNAs in cardiovascular diseases," Heart, Lung and Circulation, vol. 23, pp. 503-510, 2014.
[23] G. Long, F. Wang, Q. Duan, F. Chen, S. Yang, W. Gong, et al., "Human circulating microRNA-1 and microRNA-126 as potential novel indicators for acute myocardial infarction," Int J Biol Sci, vol. 8, pp. 811-818, 2012.
[24] S. Blankenberg, T. Zeller, O. Saarela, A. S. Havulinna, F. Kee, H. Tunstall-Pedoe, et al., "Contribution of 30 biomarkers to 10-year cardiovascular risk estimation in 2 population cohorts the MONICA, risk, genetics, archiving, and monograph (MORGAM) Biomarker Project," Circulation, vol. 121, pp. 2388-2397, 2010.
[25] K. M. Akat, D. V. Moore-McGriff, P. Morozov, M. Brown, T. Gogakos, J. C. Da Rosa, et al., "Comparative RNA-sequencing analysis of myocardial and circulating small RNAs in human heart failure and their utility as biomarkers," Proceedings of the National Academy of Sciences, vol. 111, pp. 11151-11156, 2014.
[26] J. C. Akers, V. Ramakrishnan, R. Kim, J. Skog, I. Nakano, S. Pingle, et al., "MiR-21 in the extracellular vesicles (EVs) of cerebrospinal fluid (CSF): a platform for glioblastoma biomarker development," PloS one, vol. 8, p. e78115, 2013.
[27] I. Higgins and C. Lowe, "Introduction to the principles and applications of biosensors," Philosophical Transactions of the Royal Society of London B: Biological Sciences, vol. 316, pp. 3-11, 1987.
[28] V. Khanna, A. Kumar, Y. Jain, and S. Ahmad, "Design and development of a novel high-transconductance pH-ISFET (ion-sensitive field-effect transistor)-based glucose biosensor," International journal of electronics, vol. 93, pp. 81-96, 2006.
[29] G. McFarland, "Microprocessor Design: A Practical Guide from Design Planning to Manufacturing. Microarchitecture, Chapter," ed: McGraw-Hill Professional, 2006.
[30] Y. Cui, Q. Wei, H. Park, and C. M. Lieber, "Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species," Science, vol. 293, pp. 1289-1292, 2001.
[31] G.-J. Zhang, A. Agarwal, K. D. Buddharaju, N. Singh, and Z. Gao, "Highly sensitive sensors for alkali metal ions based on complementary-metal-oxide-semiconductor-compatible silicon nanowires," Applied physics letters, vol. 90, p. 233903, 2007.
[32] J.-i. Hahm and C. M. Lieber, "Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors," Nano letters, vol. 4, pp. 51-54, 2004.
[33] Z. Li, Y. Chen, X. Li, T. Kamins, K. Nauka, and R. S. Williams, "Sequence-specific label-free DNA sensors based on silicon nanowires," Nano Letters, vol. 4, pp. 245-247, 2004.
[34] G. Zheng, F. Patolsky, Y. Cui, W. U. Wang, and C. M. Lieber, "Multiplexed electrical detection of cancer markers with nanowire sensor arrays," Nature biotechnology, vol. 23, pp. 1294-1301, 2005.
[35] E. Stern, J. F. Klemic, D. A. Routenberg, P. N. Wyrembak, D. B. Turner-Evans, A. D. Hamilton, et al., "Label-free immunodetection with CMOS-compatible semiconducting nanowires," Nature, vol. 445, pp. 519-522, 2007.
[36] B. L. Allen, P. D. Kichambare, and A. Star, "Carbon nanotube field‐effect‐transistor‐based biosensors," Advanced Materials, vol. 19, pp. 1439-1451, 2007.
[37] F. Chen, Q. Qing, J. Xia, and N. Tao, "Graphene Field‐Effect Transistors: Electrochemical Gating, Interfacial Capacitance, and Biosensing Applications," Chemistry–An Asian Journal, vol. 5, pp. 2144-2153, 2010.
[38] P. Ye, B. Yang, K. Ng, J. Bude, G. Wilk, S. Halder, et al., "GaN metal-oxide-semiconductor high-electron-mobility-transistor with atomic layer deposited Al2O3 as gate dielectric," Applied Physics Letters, vol. 86, pp. 63501-63501, 2005.
[39] S. Gupta, M. Elias, X. Wen, J. Shapiro, L. Brillson, W. Lu, et al., "Detection of clinically relevant levels of protein analyte under physiologic buffer using planar field effect transistors," Biosensors and Bioelectronics, vol. 24, pp. 505-511, 2008.
[40] O. Ambacher, M. Eickhoff, A. Link, M. Hermann, M. Stutzmann, F. Bernardini, et al., "Electronics and sensors based on pyroelectric AlGaN/GaN heterostructures," physica status solidi (c), pp. 1878-1907, 2003.
[41] S. Chu, F. Ren, S. Pearton, B. Kang, S. Kim, B. Gila, et al., "Piezoelectric polarization-induced two dimensional electron gases in AlGaN/GaN heteroepitaxial structures: Application for micro-pressure sensors," Materials Science and Engineering: A, vol. 409, pp. 340-347, 2005.
[42] B. Kang, H. Wang, F. Ren, and S. Pearton, "Electrical detection of biomaterials using AlGaN/GaN high electron mobility transistors," Journal of applied physics, vol. 104, p. 031101, 2008.
[43] B. Kang, S. Kim, F. Ren, B. P. Gila, C. R. Abernathy, and S. J. Pearton, "AlGaN/GaN-based diodes and gateless HEMTs for gas and chemical sensing," IEEE Sensors Journal, vol. 5, pp. 677-680, 2005.
[44] B. Kang, H. Wang, T. Lele, Y. Tseng, F. Ren, S. Pearton, et al., "Prostate specific antigen detection using AlGaN/GaN high electron mobility transistors," Applied physics letters, vol. 91, pp. 112106-112106, 2007.
[45] B. Kang, H. Wang, F. Ren, S. Pearton, T. Morey, D. Dennis, et al., "Enzymatic glucose detection using ZnO nanorods on the gate region of AlGaN/GaN high electron mobility transistors," Applied Physics Letters, vol. 91, p. 2103, 2007.
[46] Z. Stojek, "The electrical double layer and its structure," in Electroanalytical methods, ed: Springer, 2010, pp. 3-9.
[47] D. C. Brydges and P. A. Martin, "Coulomb systems at low density: A review," Journal of Statistical Physics, vol. 96, pp. 1163-1330, 1999.
[48] K. B. Oldham, "A Gouy–Chapman–Stern model of the double layer at a (metal)/(ionic liquid) interface," Journal of Electroanalytical Chemistry, vol. 613, pp. 131-138, 2008.
[49] R. S. Frederiksen, C. Thor, N. I. Rieben, S. Upadhyay, L. De Vico, J. H. Jensen, et al., "Effects of buffer composition and dilution on nanowire field-effect biosensors," Nanotechnology, vol. 24, p. 035501, 2012.
[50] E. Stern, R. Wagner, F. J. Sigworth, R. Breaker, T. M. Fahmy, and M. A. Reed, "Importance of the Debye screening length on nanowire field effect transistor sensors," Nano letters, vol. 7, pp. 3405-3409, 2007.
[51] C. Laborde, F. Pittino, H. Verhoeven, S. Lemay, L. Selmi, M. Jongsma, et al., "Real-time imaging of microparticles and living cells with CMOS nanocapacitor arrays," Nature nanotechnology, 2015.
[52] J.-M. Woo, S. H. Kim, H. Chun, S. J. Kim, J. Ahn, and Y. J. Park, "Modulation of molecular hybridization and charge screening in a carbon nanotube network channel using the electrical pulse method," Lab on a Chip, vol. 13, pp. 3755-3763, 2013.
[53] R. D. Munje, S. Muthukumar, A. P. Selvam, and S. Prasad, "Flexible nanoporous tunable electrical double layer biosensors for sweat diagnostics," Scientific reports, vol. 5, 2015.
[54] S. A. Bustin, V. Benes, J. A. Garson, J. Hellemans, J. Huggett, M. Kubista, et al., "The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments," Clinical chemistry, vol. 55, pp. 611-622, 2009.
[55] K. A. Haque, R. M. Pfeiffer, M. B. Beerman, J. P. Struewing, S. J. Chanock, and A. W. Bergen, "Performance of high-throughput DNA quantification methods," BMC biotechnology, vol. 3, p. 1, 2003.
[56] N. Espinosa, S. U. Schwarz, V. Cimalla, and O. Ambacher, "Detection of different target-DNA concentrations with highly sensitive AlGaN/GaN high electron mobility transistors," Sensors and Actuators B: Chemical, vol. 210, pp. 633-639, 2015.
[57] X. Xu, V. Jindal, F. Shahedipour-Sandvik, M. Bergkvist, and N. C. Cady, "Direct immobilization and hybridization of DNA on group III nitride semiconductors," Applied Surface Science, vol. 255, pp. 5905-5909, 2009.
[58] G. H. Keller and M. M. Manak, DNA probes: background, applications, procedures: Macmillan Press Ltd., 1993.
[59] T. H. Kjällman, H. Peng, C. Soeller, and J. Travas-Sejdic, "Effect of probe density and hybridization temperature on the response of an electrochemical hairpin-DNA sensor," Analytical chemistry, vol. 80, pp. 9460-9466, 2008.
[60] T. A. Taton, C. A. Mirkin, and R. L. Letsinger, "Scanometric DNA array detection with nanoparticle probes," Science, vol. 289, pp. 1757-1760, 2000.
[61] S.-J. Park, T. A. Taton, and C. A. Mirkin, "Array-based electrical detection of DNA with nanoparticle probes," Science, vol. 295, pp. 1503-1506, 2002.
[62] H. Koltai and C. Weingarten-Baror, "Specificity of DNA microarray hybridization: characterization, effectors and approaches for data correction," Nucleic acids research, vol. 36, pp. 2395-2405, 2008.
[63] J. SantaLucia Jr and D. Hicks, "The thermodynamics of DNA structural motifs," Annu. Rev. Biophys. Biomol. Struct., vol. 33, pp. 415-440, 2004.
[64] J. SantaLucia, H. T. Allawi, and P. A. Seneviratne, "Improved nearest-neighbor parameters for predicting DNA duplex stability," Biochemistry, vol. 35, pp. 3555-3562, 1996.
[65] N. Peyret, P. A. Seneviratne, H. T. Allawi, and J. SantaLucia, "Nearest-Neighbor Thermodynamics and NMR of DNA Sequences with Internal A-A, C-C, G-G, and T-T Mismatches," Biochemistry, vol. 38, pp. 3468-3477, 1999.
[66] H. T. Allawi and J. SantaLucia, "Nearest Neighbor Thermodynamic Parameters for Internal G- A Mismatches in DNA," Biochemistry, vol. 37, pp. 2170-2179, 1998.
[67] C.-J. Huang, H.-I. Lin, S.-C. Shiesh, and G.-B. Lee, "Integrated microfluidic system for rapid screening of CRP aptamers utilizing systematic evolution of ligands by exponential enrichment (SELEX)," Biosensors and bioelectronics, vol. 25, pp. 1761-1766, 2010.
.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *