|
[1] H. C. McGill, C. A. McMahan, and S. S. Gidding, "Preventing heart disease in the 21st century implications of the pathobiological determinants of atherosclerosis in youth (PDAY) study," Circulation, vol. 117, pp. 1216-1227, 2008. [2] M. Naghavi, H. Wang, R. Lozano, A. Davis, X. Liang, M. Zhou, et al., "Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013," Lancet, vol. 385, pp. 117-171, 2015. [3] J. A. Finegold, P. Asaria, and D. P. Francis, "Mortality from ischaemic heart disease by country, region, and age: statistics from World Health Organisation and United Nations," International journal of cardiology, vol. 168, pp. 934-945, 2013. [4] R. S. Vasan, "Biomarkers of cardiovascular disease molecular basis and practical considerations," Circulation, vol. 113, pp. 2335-2362, 2006. [5] S. Koenig, C. Porte, M. Solé, and J. Sturve, "Biliary PAH and alkylphenol metabolites, biomarker enzyme activities, and gene expression levels in the deep-sea fish Alepocephalus rostratus," Environmental science & technology, vol. 47, pp. 2854-2861, 2013. [6] S. Krishnan, V. Mani, D. Wasalathanthri, C. V. Kumar, and J. F. Rusling, "Attomolar detection of a cancer biomarker protein in serum by surface plasmon resonance using superparamagnetic particle labels," Angewandte Chemie International Edition, vol. 50, pp. 1175-1178, 2011. [7] E. Gormally, E. Caboux, P. Vineis, and P. Hainaut, "Circulating free DNA in plasma or serum as biomarker of carcinogenesis: practical aspects and biological significance," Mutation Research/Reviews in Mutation Research, vol. 635, pp. 105-117, 2007. [8] P. Bergveld, "The development and application of FET-based biosensors," Biosensors, vol. 2, pp. 15-33, 1986. [9] E. Stern, R. Wagner, F. J. Sigworth, R. Breaker, T. M. Fahmy, and M. A. Reed, "Importance of the Debye screening length on nanowire field effect transistor sensors," Nano letters, vol. 7, pp. 3405-3409, 2007. [10] M. Naghavi, H. Wang, R. Lozano, A. Davis, X. Liang, M. Zhou, et al., "Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013," Lancet, vol. 385, pp. 117-171, 2015. [11] V. L. Feigin, M. H. Forouzanfar, R. Krishnamurthi, G. A. Mensah, M. Connor, D. A. Bennett, et al., "Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study 2010," The Lancet, vol. 383, pp. 245-255, 2014. [12] S. V. Dean, Z. S. Lassi, A. M. Imam, and Z. A. Bhutta, "Preconception care: nutritional risks and interventions," Reproductive health, vol. 11, p. 1, 2014. [13] N. Rifai and P. M. Ridker, "High-sensitivity C-reactive protein: a novel and promising marker of coronary heart disease," Clinical chemistry, vol. 47, pp. 403-411, 2001. [14] Y. Michowitz, Y. Arbel, D. Wexler, D. Sheps, O. Rogowski, I. Shapira, et al., "Predictive value of high sensitivity CRP in patients with diastolic heart failure," International journal of cardiology, vol. 125, pp. 347-351, 2008. [15] D. M. Lloyd-Jones, K. Liu, L. Tian, and P. Greenland, "Narrative Review: Assessment of C-Reactive Protein in Risk Prediction for Cardiovascular DiseaseC-Reactive Protein and Risk for Cardiovascular Disease," Annals of internal medicine, vol. 145, pp. 35-42, 2006. [16] J. Aronson, "Biomarkers and surrogate endpoints," British journal of clinical pharmacology, vol. 59, pp. 491-494, 2005. [17] J. A. de Lemos, D. A. Morrow, J. H. Bentley, T. Omland, M. S. Sabatine, C. H. McCabe, et al., "The prognostic value of B-type natriuretic peptide in patients with acute coronary syndromes," New England Journal of Medicine, vol. 345, pp. 1014-1021, 2001. [18] J. Layland, R. J. Solaro, and A. M. Shah, "Regulation of cardiac contractile function by troponin I phosphorylation," Cardiovascular research, vol. 66, pp. 12-21, 2005. [19] M. B. Pepys and G. M. Hirschfield, "C-reactive protein: a critical update," The Journal of clinical investigation, vol. 111, pp. 1805-1812, 2003. [20] W. S. Tillett and T. Francis, "Serological reactions in pneumonia with a non-protein somatic fraction of pneumococcus," The Journal of experimental medicine, vol. 52, pp. 561-571, 1930. [21] E. M. Small, R. J. Frost, and E. N. Olson, "MicroRNAs add a new dimension to cardiovascular disease," Circulation, vol. 121, pp. 1022-1032, 2010. [22] A. S. M. Sayed, K. Xia, U. Salma, T. Yang, and J. Peng, "Diagnosis, prognosis and therapeutic role of circulating miRNAs in cardiovascular diseases," Heart, Lung and Circulation, vol. 23, pp. 503-510, 2014. [23] G. Long, F. Wang, Q. Duan, F. Chen, S. Yang, W. Gong, et al., "Human circulating microRNA-1 and microRNA-126 as potential novel indicators for acute myocardial infarction," Int J Biol Sci, vol. 8, pp. 811-818, 2012. [24] S. Blankenberg, T. Zeller, O. Saarela, A. S. Havulinna, F. Kee, H. Tunstall-Pedoe, et al., "Contribution of 30 biomarkers to 10-year cardiovascular risk estimation in 2 population cohorts the MONICA, risk, genetics, archiving, and monograph (MORGAM) Biomarker Project," Circulation, vol. 121, pp. 2388-2397, 2010. [25] K. M. Akat, D. V. Moore-McGriff, P. Morozov, M. Brown, T. Gogakos, J. C. Da Rosa, et al., "Comparative RNA-sequencing analysis of myocardial and circulating small RNAs in human heart failure and their utility as biomarkers," Proceedings of the National Academy of Sciences, vol. 111, pp. 11151-11156, 2014. [26] J. C. Akers, V. Ramakrishnan, R. Kim, J. Skog, I. Nakano, S. Pingle, et al., "MiR-21 in the extracellular vesicles (EVs) of cerebrospinal fluid (CSF): a platform for glioblastoma biomarker development," PloS one, vol. 8, p. e78115, 2013. [27] I. Higgins and C. Lowe, "Introduction to the principles and applications of biosensors," Philosophical Transactions of the Royal Society of London B: Biological Sciences, vol. 316, pp. 3-11, 1987. [28] V. Khanna, A. Kumar, Y. Jain, and S. Ahmad, "Design and development of a novel high-transconductance pH-ISFET (ion-sensitive field-effect transistor)-based glucose biosensor," International journal of electronics, vol. 93, pp. 81-96, 2006. [29] G. McFarland, "Microprocessor Design: A Practical Guide from Design Planning to Manufacturing. Microarchitecture, Chapter," ed: McGraw-Hill Professional, 2006. [30] Y. Cui, Q. Wei, H. Park, and C. M. Lieber, "Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species," Science, vol. 293, pp. 1289-1292, 2001. [31] G.-J. Zhang, A. Agarwal, K. D. Buddharaju, N. Singh, and Z. Gao, "Highly sensitive sensors for alkali metal ions based on complementary-metal-oxide-semiconductor-compatible silicon nanowires," Applied physics letters, vol. 90, p. 233903, 2007. [32] J.-i. Hahm and C. M. Lieber, "Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors," Nano letters, vol. 4, pp. 51-54, 2004. [33] Z. Li, Y. Chen, X. Li, T. Kamins, K. Nauka, and R. S. Williams, "Sequence-specific label-free DNA sensors based on silicon nanowires," Nano Letters, vol. 4, pp. 245-247, 2004. [34] G. Zheng, F. Patolsky, Y. Cui, W. U. Wang, and C. M. Lieber, "Multiplexed electrical detection of cancer markers with nanowire sensor arrays," Nature biotechnology, vol. 23, pp. 1294-1301, 2005. [35] E. Stern, J. F. Klemic, D. A. Routenberg, P. N. Wyrembak, D. B. Turner-Evans, A. D. Hamilton, et al., "Label-free immunodetection with CMOS-compatible semiconducting nanowires," Nature, vol. 445, pp. 519-522, 2007. [36] B. L. Allen, P. D. Kichambare, and A. Star, "Carbon nanotube field‐effect‐transistor‐based biosensors," Advanced Materials, vol. 19, pp. 1439-1451, 2007. [37] F. Chen, Q. Qing, J. Xia, and N. Tao, "Graphene Field‐Effect Transistors: Electrochemical Gating, Interfacial Capacitance, and Biosensing Applications," Chemistry–An Asian Journal, vol. 5, pp. 2144-2153, 2010. [38] P. Ye, B. Yang, K. Ng, J. Bude, G. Wilk, S. Halder, et al., "GaN metal-oxide-semiconductor high-electron-mobility-transistor with atomic layer deposited Al2O3 as gate dielectric," Applied Physics Letters, vol. 86, pp. 63501-63501, 2005. [39] S. Gupta, M. Elias, X. Wen, J. Shapiro, L. Brillson, W. Lu, et al., "Detection of clinically relevant levels of protein analyte under physiologic buffer using planar field effect transistors," Biosensors and Bioelectronics, vol. 24, pp. 505-511, 2008. [40] O. Ambacher, M. Eickhoff, A. Link, M. Hermann, M. Stutzmann, F. Bernardini, et al., "Electronics and sensors based on pyroelectric AlGaN/GaN heterostructures," physica status solidi (c), pp. 1878-1907, 2003. [41] S. Chu, F. Ren, S. Pearton, B. Kang, S. Kim, B. Gila, et al., "Piezoelectric polarization-induced two dimensional electron gases in AlGaN/GaN heteroepitaxial structures: Application for micro-pressure sensors," Materials Science and Engineering: A, vol. 409, pp. 340-347, 2005. [42] B. Kang, H. Wang, F. Ren, and S. Pearton, "Electrical detection of biomaterials using AlGaN/GaN high electron mobility transistors," Journal of applied physics, vol. 104, p. 031101, 2008. [43] B. Kang, S. Kim, F. Ren, B. P. Gila, C. R. Abernathy, and S. J. Pearton, "AlGaN/GaN-based diodes and gateless HEMTs for gas and chemical sensing," IEEE Sensors Journal, vol. 5, pp. 677-680, 2005. [44] B. Kang, H. Wang, T. Lele, Y. Tseng, F. Ren, S. Pearton, et al., "Prostate specific antigen detection using AlGaN/GaN high electron mobility transistors," Applied physics letters, vol. 91, pp. 112106-112106, 2007. [45] B. Kang, H. Wang, F. Ren, S. Pearton, T. Morey, D. Dennis, et al., "Enzymatic glucose detection using ZnO nanorods on the gate region of AlGaN/GaN high electron mobility transistors," Applied Physics Letters, vol. 91, p. 2103, 2007. [46] Z. Stojek, "The electrical double layer and its structure," in Electroanalytical methods, ed: Springer, 2010, pp. 3-9. [47] D. C. Brydges and P. A. Martin, "Coulomb systems at low density: A review," Journal of Statistical Physics, vol. 96, pp. 1163-1330, 1999. [48] K. B. Oldham, "A Gouy–Chapman–Stern model of the double layer at a (metal)/(ionic liquid) interface," Journal of Electroanalytical Chemistry, vol. 613, pp. 131-138, 2008. [49] R. S. Frederiksen, C. Thor, N. I. Rieben, S. Upadhyay, L. De Vico, J. H. Jensen, et al., "Effects of buffer composition and dilution on nanowire field-effect biosensors," Nanotechnology, vol. 24, p. 035501, 2012. [50] E. Stern, R. Wagner, F. J. Sigworth, R. Breaker, T. M. Fahmy, and M. A. Reed, "Importance of the Debye screening length on nanowire field effect transistor sensors," Nano letters, vol. 7, pp. 3405-3409, 2007. [51] C. Laborde, F. Pittino, H. Verhoeven, S. Lemay, L. Selmi, M. Jongsma, et al., "Real-time imaging of microparticles and living cells with CMOS nanocapacitor arrays," Nature nanotechnology, 2015. [52] J.-M. Woo, S. H. Kim, H. Chun, S. J. Kim, J. Ahn, and Y. J. Park, "Modulation of molecular hybridization and charge screening in a carbon nanotube network channel using the electrical pulse method," Lab on a Chip, vol. 13, pp. 3755-3763, 2013. [53] R. D. Munje, S. Muthukumar, A. P. Selvam, and S. Prasad, "Flexible nanoporous tunable electrical double layer biosensors for sweat diagnostics," Scientific reports, vol. 5, 2015. [54] S. A. Bustin, V. Benes, J. A. Garson, J. Hellemans, J. Huggett, M. Kubista, et al., "The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments," Clinical chemistry, vol. 55, pp. 611-622, 2009. [55] K. A. Haque, R. M. Pfeiffer, M. B. Beerman, J. P. Struewing, S. J. Chanock, and A. W. Bergen, "Performance of high-throughput DNA quantification methods," BMC biotechnology, vol. 3, p. 1, 2003. [56] N. Espinosa, S. U. Schwarz, V. Cimalla, and O. Ambacher, "Detection of different target-DNA concentrations with highly sensitive AlGaN/GaN high electron mobility transistors," Sensors and Actuators B: Chemical, vol. 210, pp. 633-639, 2015. [57] X. Xu, V. Jindal, F. Shahedipour-Sandvik, M. Bergkvist, and N. C. Cady, "Direct immobilization and hybridization of DNA on group III nitride semiconductors," Applied Surface Science, vol. 255, pp. 5905-5909, 2009. [58] G. H. Keller and M. M. Manak, DNA probes: background, applications, procedures: Macmillan Press Ltd., 1993. [59] T. H. Kjällman, H. Peng, C. Soeller, and J. Travas-Sejdic, "Effect of probe density and hybridization temperature on the response of an electrochemical hairpin-DNA sensor," Analytical chemistry, vol. 80, pp. 9460-9466, 2008. [60] T. A. Taton, C. A. Mirkin, and R. L. Letsinger, "Scanometric DNA array detection with nanoparticle probes," Science, vol. 289, pp. 1757-1760, 2000. [61] S.-J. Park, T. A. Taton, and C. A. Mirkin, "Array-based electrical detection of DNA with nanoparticle probes," Science, vol. 295, pp. 1503-1506, 2002. [62] H. Koltai and C. Weingarten-Baror, "Specificity of DNA microarray hybridization: characterization, effectors and approaches for data correction," Nucleic acids research, vol. 36, pp. 2395-2405, 2008. [63] J. SantaLucia Jr and D. Hicks, "The thermodynamics of DNA structural motifs," Annu. Rev. Biophys. Biomol. Struct., vol. 33, pp. 415-440, 2004. [64] J. SantaLucia, H. T. Allawi, and P. A. Seneviratne, "Improved nearest-neighbor parameters for predicting DNA duplex stability," Biochemistry, vol. 35, pp. 3555-3562, 1996. [65] N. Peyret, P. A. Seneviratne, H. T. Allawi, and J. SantaLucia, "Nearest-Neighbor Thermodynamics and NMR of DNA Sequences with Internal A-A, C-C, G-G, and T-T Mismatches," Biochemistry, vol. 38, pp. 3468-3477, 1999. [66] H. T. Allawi and J. SantaLucia, "Nearest Neighbor Thermodynamic Parameters for Internal G- A Mismatches in DNA," Biochemistry, vol. 37, pp. 2170-2179, 1998. [67] C.-J. Huang, H.-I. Lin, S.-C. Shiesh, and G.-B. Lee, "Integrated microfluidic system for rapid screening of CRP aptamers utilizing systematic evolution of ligands by exponential enrichment (SELEX)," Biosensors and bioelectronics, vol. 25, pp. 1761-1766, 2010. .
|