|
1. B.Gil, III-Nitride Semiconductors and their Modern Devices, 2013. 2. K. Kashyap, A. Kumar, C. T. Huang, Y. Y. Lin, M. T. Hou & J. A. Yeh, Elimination of strength degrading effects caused by surface microdefect: A prevention achieved by silicon nanotexturing to avoid catastrophic brittle fracture. Scientific Reports, Jun 2015. 3. HIS Markit, GaN-on-Silicon LEDs Forecast to Increase Market Share to 40 Percent by 2020. Newsroom, 2013. 4. Yole Development, Power GaN Market 2014. June 2014. 5. A. Dadgar, S. Fritze, O. Schulz, J. Henniga, M. Kunzec, I. Daumiller, K. Haberland, A. Krost, H. Witte, A. Diez, U. Heinle, Anisotropic bow and plastic deformation of GaN on silicon. Journal of Crystal Growth, May 2013. 370: p. 278-281. 6. S. Pal and C. Jacob, Silicon - a new substrate for GaN growth. Bulletin of Materials Science, Dec 2004. 7. T. Paskova, D. A. Hanser, and K. R. Evans, GaN Substrates for III-Nitride Devices. Proceedings of the Ieee, Jul 2010. 98: p. 1324-1338. 8. A. Krost and A. Dadgar, GaN-based optoelectronics on silicon substrates. Materials Science and Engineering B-Solid State Materials for Advanced Technology, May 2002. 93: p. 77-84. 9. M. Gonzalez , K. Cheng , P. Tseng , G. Borghs, GaN growth on patterned silicon substrates. A thermo mechanical study on wafer bow reduction. Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), 2012: p. 1-6. 10. M. Ohring, Materials science of thin films, Academic press, 2001. 11. S. L. Tian, 光學薄膜應力與熱膨脹係數量測之研究. 博士, 2001. 12. W. X. Haung , 製程參數對薄膜應力影響之研究. 博士, 2001. 13. J.M. Hodgkinson, Mechanical testing of advanced fibre composites. Elsevier, 2000. 14. T. Takeuchi, H. Amano, K. Hiramatsu, N. Sawaki, and I. Akasaki, Growth of Single Crystalline Gan Film on Si-Substrate Using 3c-Sic as an Intermediate Layer. Journal of Crystal Growth, Dec 1991. 115: p. 634-638. 15. J. W. Yang, C. J. Sun, Q. Chen, M. Z. Anwar, M. A. Khan, S. A. Nikishin, High quality GaN-InGaN heterostructures grown on (111)silicon substrates. Applied Physics Letters, Dec 1996. 69: p. 3566-3568. 16. Compound Semiconductor Taiwan, 以大尺寸矽晶圓降低LED 成本. 2013. 17. N. Perkins, M. Horton, Z. Bandic, T. McGill, and T. Kuech, Halide vapor phase epitaxy of gallium nitride films on sapphire and silicon substrates. MRS Proceedings, 1995: p. 243. 18. A. Watanabe, T. Takeuchi, K. Hirosawa, H. Amano, K. Hiramatsu, and I. Akasaki, The Growth of Single Crystalline Gan on a Si Substrate Using Aln as an Intermediate Layer. Journal of Crystal Growth, Mar 1993. 128: p. 391-396. 19. P. Kung, A. Saxler, X. Zhang, D. Walker, T. C. Wang, I. Ferguson, High-Quality Aln and Gan Epilayers Grown on (00.1) Sapphire, (100), and (111) Silicon Substrates. Applied Physics Letters, May 1995. 66: p. 2958-2960. 20. H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Applied Physics Letters, 1986. 48: p. 353-355. 21. S. A. Nikishin, N. N. Faleev, V. G. Antipov, S. Francoeur, L. G. Peralta, G. A. Seryogin, High quality GaN grown on Si(111) by gas source molecular beam epitaxy with ammonia. Applied Physics Letters, Oct 1999. 75: p. 2073-2075. 22. K. Y. Zang, S. J. Chua, L. S. Wang, C. V. Thompson, Evolution of AlN buffer layers on Silicon and the effect on the property of the expitaxial GaN film. this proceedings, 1989. 23. D. K. Kim, Effect of AlN buffer thickness on stress relaxation in GaN layer on Si (111). Solid-State Electronics, 2007. 51: p. 1005-1008. 24. E. Feltin, B. Beaumont, M. Laugt, P. Mierry, P. Vennegues, H. Lahreche, Stress control in GaN grown on silicon (111) by metalorganic vapor phase epitaxy. Applied Physics Letters, Nov 2001. 79: p. 3230-3232. 25. T. Szymański, M. Wośko, M. Wzorek, B. Paszkiewicz and R. Paszkiewicz, Stress engineering in GaN structures grown on Si(111) substrates by SiN masking layer application. Journal of Vacuum Science & Technology A, Jul 2015. 33. 26. W. D. Callister and D. G. Rethwisch, Fundamentals of materials science and engineering: an integrated approach. 2012. 27. F. Shimura, Semiconductor silicon crystal technology. Elsevier, 2012. 28. L.C. Zheng, Mechanical & Transistor Properties of Flexible P-MOSFET Wafers Strengthened by Nanostructure on Backside. Master, 2014. 29. J. F. Ziegler, Ion Implantation Science and Technology 2e. Elsevier, 2012. 30. T. Mikolajick and W. M. Weber, The Research of Nanowires on Silicon. 2014. 31. Y. Hsu, 6-inch GaN Growth on Silicon Substrates Strengthened by Sealed Nanotextures. 2016 . 32. AZO Materials, Silica - Silicon Dioxide (SiO2). 2001. 33. W. R. Runyan and K. E. Bean, Semiconductor integrated circuit processing technology. 1990. 34. A. Peng, Covered Nanotexturing for High Strength Silicon Substrate Applied in IC Industry. Master, 2015. 35. E. Donovan, F. Spaepen, D. Turnbull, J. Poate, and D. Jacobson, Heat of crystallization and melting point of amorphous silicon. Applied Physics Letters, 1983. 42: p. 698-700. 36. C. N. Chen, C. T. Huang, C. L. Chao, T. K. Hou, W. C. Hsu, and J. A. Yeh, Strengthening for sc-Si solar cells by surface modification with nanowires. Journal of Microelectromechanical Systems, 2011. 20: p. 549-551. 37. G. Wu, Silicon Substrate for GaN Epi-Growth by Stress Compensation Layer and Nanostructure Technique. Master, 2015. 38. H. Xiao, Semiconductor process technology. 2012: p. 325-337. 39. AZO Materials, Applications of Metal Halide Precursors in CVD/ALD Processes. May 2013. 40. M. S. Haque,H. A. Naseem,W. D. Brown, Residual stress behavior of thin plasma-enhanced chemical vapor deposited silicon dioxide films as a function of storage time. Journal of Applied Physics, 1997. 81(7): p. 3129-3133. 41. P. F. Min and S. H. Li, Extremely low stress UV-transparent Silicon nitride films deposited by plasma enhanced chemical vapor deposition. July 2000. 42. R. Charavel, B. Olbrechts, J. P. Raskin, Stress release of PECVD oxide by RTA. SPIE, 2003. 5116: p. 11. 43. X. Zhang, K. S. Chen, and S. M. Spearing, Thermo-mechanical behavior of thick PECVD oxide films for power MEMS applications. Sensors and Actuators A: Physical, 2003. 103(1–2): p. 263-270. 44. R. Mises, Mechanics of the ductile form changes of crystals. Zeitschrift Fur Angewandte Mathematik Und Mechanik, 1928. 8: p. 161-185. 45. S. Nishino, J. A. Powell, and H. A. Will, Production of Large-Area Single-Crystal Wafers of Cubic Sic for Semiconductor-Devices. Applied Physics Letters, 1983. 42: p. 460-462. 46. ToHo Techology Corporation, FLX 2320-S, 2003. 47. S. Kuo, X. Zhang and S. Lin, Intrinsic stress generation and relaxation of plasma-enhanced chemical vapor deposited oxide during deposition and subsequent thermal cycling. Thin Solid Films, 2003.434: p. 190-202. 48. M. S. Haque, H. A. Naseem, and W. D. Brown, Correlation of stress behavior with hydrogen-related impurities in plasma-enhanced chemical vapor deposited silicon dioxide films. Journal of Applied Physics,1997. 82. 49. A. Masolin, P. B. Roberto, and M. Bernacki, Thermo-mechanical and fracture properties in single crystal silicon. Journal of Materials Science,2012. 48: p. 979-988.
|