帳號:guest(18.118.253.124)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):羅仕鈞
作者(外文):Lo, Shih-Chun
論文名稱(中文):以微機電系統實現表面電漿子共振顯示之理論設計
論文名稱(外文):Theoretical Design of Surface Plasmon Resonance Display Realized by MEMS
指導教授(中文):羅丞曜
指導教授(外文):Lo, Cheng-Yao
口試委員(中文):陳榮順
陳政寰
口試委員(外文):Chen, Rong-Shun
Chen, Cheng-Huan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:104035508
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:107
中文關鍵詞:表面電漿子共振聚二甲基矽氧烷微機電系統
外文關鍵詞:Color filtersMEMSPDMSsurface plasmon
相關次數:
  • 推薦推薦:0
  • 點閱點閱:81
  • 評分評分:*****
  • 下載下載:18
  • 收藏收藏:0
本論文提出一種利用微機電系統驅動表面電漿子共振顯示技術的方法,並評估以及分析其可行性。常見的表面電漿子共振顯示技術,一種結構只支援一種顏色的顯示,但本研究利用微機電系統產生環狀的等向拉伸,使金屬結構擴張以及圖形的排列改變,進而以一種結構產生三種濾光效果。此提案可縮小畫素所需面積,進而提高顯示器的解析度。
模擬結果顯示,在金、銀以及鋁當中,鋁為最理想的光學元件材料,因為鋁濾出的光譜呈現高穿透率、窄半高寬,更有明顯的色彩轉換。微機電模擬達到近12.8%的金屬週期變化,所產生的靜電力能夠讓藍色設計切換至綠色。
A tunable surface plasmon resonance (SPR) structure driven by microelectromechanical system (MEMS) is proposed and analyzed in this work. The MEMS isotropically expands the suspended SPR structures of nanometer metal disks scattered on a polydimethylsiloxane (PDMS) diaphragm, to different extents on the xy-plane; filtering the incident white light into various colors under control of applied voltage. This symmetrical MEMS design and its isotropic structure modulation of SPR prevailed other MEMS color filters in modulation capability, operation variety, and shows independency of polarization.
摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VIII
表目錄 XI
符號表 XII
第1章 緒論 1
1.1 前言 1
1.1.1微機電系統顯示器(MEMS display) 1
1.1.1.1 Mirasol顯示器(Mirasol display) 2
1.1.1.2微快門顯示器(Digital Micro Shutter display, DMS) 2
1.1.1.3 GLV顯示器(Grating Light Valve display) 3
1.1.2表面電漿子共振顯示器(Surface Plasmon Resonance display) 3
1.1.2.1金屬孔洞陣列圖形(Hole array) 4
1.1.2.2金屬點狀陣列(Dots array) 5
1.1.2.3環狀金屬孔洞陣列(Ring-shaped hole array) 5
1.1.2.4金屬光柵圖形(Grating) 6
1.1.2.5極化光(Polarized light) 6
1.2研究動機 7
1.3文獻回顧 8
1.3.1微機電梳狀結構 8
1.3.2等向拉伸 8
1.3.3 一維柵狀金屬結構拉伸 9
第2章 理論與方法 10
2.1表面電漿子(Surface Plasmon) 10
2.1.1表面電漿子共振(Surface Plasmon Resonance) 10
2.1.2局域表面電漿子共振(Localized Surface Plasmon Resonance) 11
2.2微機電系統(Microelectromechanical Systems, MEMS) 12
2.2.1平行電容板 13
2.2.2梳狀式靜電制動器 14
2.3光學元件設置 15
2.4微機電系統設置 15
第3章 模擬與設計 17
3.1光學模擬 17
3.1.1奈米結構尺寸對頻譜之影響 17
3.1.2金屬材料評估 18
3.1.2.1金屬金模擬結果 18
3.1.2.2金屬銀模擬結果 18
3.1.2.3金屬鋁模擬結果 19
3.2微機電系統模擬 19
3.2.1厚度測試模擬結果 19
3.2.2指叉數測試模擬結果 20
3.2.3楊氏係數測試模擬結果 20
3.2.4軟性基材厚度測試模擬結果 21
3.2.5軟性基材尺寸測試模擬結果 21
3.2.6彈簧尺寸測試模擬結果 21
3.2.7最終設計模擬結果 22
3.3奈米金屬結構模擬 22
第4章 討論與分析 23
4.1分析方法 23
4.1.1 FOM方法 23
4.1.2 CIE色域圖 24
4.2金的材料分析 24
4.3銀的材料分析 24
4.4鋁的材料分析 25
4.5微機電系統評估 25
4.6田口實驗設計參數評估 26
第5章 結論 28
第6章 未來工作 29
參考文獻 88
附錄一 光學元件實作 90
附錄二 奈米結構壓印 92
附錄三 光學元件與微機電系統整合 93
發表清單 107

[1] Brian J. Gally, “Wide-Gamut Color Reflective Displays Using iMoD Interference Technology”, SID, 35, 2004.
[2] Jignesh Gandhi, Je Hong Kim, Nesbitt Hagood, Lodewyk Steyn, John Fijol, Tim Brosnihan, Stephen Lewis, Gene Fike, Mark Halfman, Richard Payne, “Sunlight Readability of Digital Micro Shutter Based Display Technology”, SID, 41, 2010.
[3] T.S. Perry, “Tomorrow's TV - the grating light valve”, IEEE Spectrum, 41, 38-41, 2004.
[4] Jir'´ Homola, Sinclair S. Yee, Gu¨nter Gauglitz, “Surface Plasmon Resonance Sensors: Review” ,Sensors and Actuators B, 54, 3-15, 1999.
[5] Qin Chen and David R. S. Cumming, “High Transmission and Low Color Cross-Talk Plasmonic Color Filters Using Triangular-Lattice Hole Arrays in Aluminum Films”, Optics Express, 18, 14056-14062, 2010.
[6] Hong-Shik Lee, Yeo-Taek Yoon, Sang-Shin Lee, Sang-Hoon Kim, and Ki-Dong Lee, “Color Filter Based On a Subwavelength Patterned Metal Grating”, Optics Express, 15, 15457-15463, 2007.
[7] Alexander S. Roberts, Anders Pors, Ole Albrektsen, and Sergey I. Bozhevolnyi, “Subwavelength Plasmonic Color Printing Protected for Ambient Use”, Nano Lett., 14, 783-787, 2014.
[8] Zhengqi Liu, Guiqiang Liu, Kuan Huang, Yuanhao Chen, Ying Hu, Xiangnan Zhang, and Zhengjie Cai, “Enhanced Optical Transmission of a Continuous Metal Film with Double Metal Cylinder Arrays”, IEEE Photonics Technology Letters, 25, 1157-1160, 2013.
[9] Jun Wang, Wei Zhou, and Er-Ping Li, “Enhancing The Light Transmission of Plasmonic Metamaterials Through Polygonal Aperture Arrays”, Optics Express, 17, 20349-20354, 2009.
[10] H. Honma, K. Takahashi , M. Ishida, K. Sawada, “Fabrication of Tunable Plasmonic Color Filter Using Al Subwavelength Grating Integrated With Electrostatic Comb-Drive Actuator”, Solid-State Sensors, Actuators and Microsystems, 2015.
[11] Yi-Chung Tung and Katsuo Kurabayashi, “A Single-Layer PDMS-On-Silicon Hybrid Microactuator with Multi-Axis Out-of-Plane Motion Capabilities—Part II: Fabrication and Characterization”, Journal of Microelectromechanical Systems, 14, 558-566, 2005.
[12] Jian-Wei Hong, Chung-Yuan Yang, and Cheng-Yao Lo, “Critical Dimension and Pattern Size Enhancement Using Pre-Strained Lithography”, Applied Physics Letters, 105, 154103, 2014.
[13] Michal Stach, En-Chiang Chang, Chung-Yuan Yang and Cheng-Yao Lo, “Post-Lithography Pattern Modification and Its Application to a Tunable Wire Grid Polarizer”, Nanotechnology, 24, 115306, 2013.
[14] Harry A. Atwater, “The Promise of Plasmonics”, Scientific American, 296, 56-62, Apr. 2007.
[15] William L. Barnes, Alain Dereux & Thomas W. Ebbesen, “Surface Plasmon Subwavelength Optics”, Nature, 424, 824-830, 2003.
[16] Katherine A.Willets and Richard P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy and Sensing”, Annual Review of Physical Chemistry, 58, 267-297, 2007.
[17] Robert Katz, Physics, Chapter 25: Capacitance and Dielectrics.
[18] William C. Tang, Tu-Cuong H. Nguyen, Michael W. Judy, Roger T. Howe, “Electrostatic-Comb Drive of Lateral Polysilicon Resonators”, Sensors and Actuators A: Physical, 21, 328-331, 1990.
[19] Xing Yan, Frank W. Mont, David J. Poxson, Jaehee Cho, E. Fred Schubert, Min-Ho Kim, and Cheolsoo Sone, “Electrically conductive thin-film color filters made of single-material indium-tin-oxide”, Journal of Applied Physics, 109, 2011.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *