|
[1] R. P. Feynman, "There's plenty of room at the bottom," Journal of Microelectromechanical Systems, vol. 1, pp. 60-66, 1992. [2] R. Feynman, "Infinitesimal machinery," Journal of Microelectromechanical Systems, vol. 2, pp. 4-14, 1993. [3] S. K. Cho, H. Moon, J. Fowler, and C.-J. Kim, Splitting a liquid droplet for electrowetting-based microfluidics vol. 2, 2001. [4] M. G. Pollack, A. D. Shenderov, and R. B. Fair, "Electrowetting-based actuation of droplets for integrated microfluidics," Lab on a Chip, vol. 2, pp. 96-101, 2002. [5] C. Sung Kwon, M. Hyejin, and K. Chang-Jin, "Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits," Journal of Microelectromechanical Systems, vol. 12, pp. 70-80, 2003. [6] A. Papathanasiou, A. T. Papaioannou, and A. Boudouvis, "Illuminating the connection between contact angle saturation and dielectric breakdown in electrowetting through leakage current measurements" ,vol. 103, 2008. [7] Y. Li, W. Parkes, L. I. Haworth, A. W. S. Ross, J. T. M. Stevenson, and A. J. Walton, "Room-Temperature Fabrication of Anodic Tantalum Pentoxide for Low-Voltage Electrowetting on Dielectric (EWOD)," Journal of Microelectromechanical Systems, vol. 17, pp. 1481-1488, 2008. [8] Y. S. Heo, L. M. Cabrera, C. L. Bormann, C. T. Shah, S. Takayama, and G. D. Smith, "Dynamic microfunnel culture enhances mouse embryo development and pregnancy rates," Human Reproduction, vol. 25, pp. 613-622, 2010. [9] K. Matsuura, N. Hayashi, Y. Kuroda, C. Takiue, R. Hirata, M. Takenami, Y. Aoi, N. Yoshioka, T. Habara, T. Mukaida, and K. Naruse, "Improved development of mouse and human embryos using a tilting embryo culture system," Reproductive BioMedicine Online, vol. 20, pp. 358-364, 2010. [10] Y.-H. Chang, G.-B. Lee, F.-C. Huang, Y.-Y. Chen, and J.-L. Lin, "Integrated polymerase chain reaction chips utilizing digital microfluidics," Biomedical Microdevices, vol. 8, pp. 215-225, 2006. [11] V. N. Luk, G. C. H. Mo, and A. R. Wheeler, "Pluronic Additives: A Solution to Sticky Problems in Digital Microfluidics," Langmuir, vol. 24, pp. 6382-6389, 2008. [12] S. H. Au, P. Kumar, and A. R. Wheeler, "A New Angle on Pluronic Additives: Advancing Droplets and Understanding in Digital Microfluidics," Langmuir, vol. 27, pp. 8586-8594, 2011. [13] D. Witters, N. Vergauwe, S. Vermeir, F. Ceyssens, S. Liekens, R. Puers, and J. Lammertyn, "Biofunctionalization of electrowetting-on-dielectric digital microfluidic chips for miniaturized cell-based applications," Lab on a Chip, vol. 11, pp. 2790-2794, 2011. [14] S. Srigunapalan, I. A. Eydelnant, C. A. Simmons, and A. R. Wheeler, "A digital microfluidic platform for primary cell culture and analysis," Lab on a Chip, vol. 12, pp. 369-375, 2012. [15] I. Barbulovic-Nad, S. H. Au, and A. R. Wheeler, "A microfluidic platform for complete mammalian cell culture," Lab on a Chip, vol. 10, pp. 1536-1542, 2010. [16] D. G. Pyne, J. Liu, M. Abdelgawad, and Y. Sun, "Digital Microfluidic Processing of Mammalian Embryos for Vitrification," PLOS ONE, vol. 9, p. e108128, 2014. [17] N. Tsukada, K.-i. Kudoh, M. Budiman, A. Yamamoto, T. Higuchi, M. Kobayashi, K. Sato, K. Oishi, and K. Iida, "Development of Automated Nuclear Transplantation System," Journal of Mammalian Ova Research, vol. 18, pp. 106-109, 2001. [18] H. Y. Tseng, D. J. Yao, C. H. Tien, C. J. Li, and H. Y. Huang, "Using control microfluidic system to enhance the sperm motility sorting efficiency," in 2012 IEEE 6th International Conference on Nano/Molecular Medicine and Engineering (NANOMED),pp. 47-50, 2012. [19] H.-Y. Huang, T.-L. Wu, H.-R. Huang, C.-J. Li, H.-T. Fu, Y.-K. Soong, M.-Y. Lee, and D.-J. Yao, "Isolation of Motile Spermatozoa with a Microfluidic Chip Having a Surface-Modified Microchannel," Journal of Laboratory Automation, vol. 19, pp. 91-99, 2013. [20] J. E. Swain and G. D. Smith, "Advances in embryo culture platforms: novel approaches to improve preimplantation embryo development through modifications of the microenvironment," Human Reproduction Update, vol. 17, pp. 541-557, 2011. [21] 曾新堯, "利用控制微流體系統以提升精蟲篩選之效能," 清華大學奈米工程與微系統研究所學位論文, 清華大學, 2013. [22] H. C. Zeringue, I. K. Glasgow, D. J. Beebe, J. T. Lyman, and M. B. Wheeler, "Micro fluidic single embryo culture systems in PDMS," in Proceedings of the First Joint BMES/EMBS Conference. 1999 IEEE Engineering in Medicine and Biology 21st Annual Conference and the 1999 Annual Fall Meeting of the Biomedical Engineering Society (Cat. N, p. 851 vol.2, 1999. [23] S.-K. Fan, P.-W. Huang, T.-T. Wang, and Y.-H. Peng, "Cross-scale electric manipulations of cells and droplets by frequency-modulated dielectrophoresis and electrowetting," Lab on a Chip, vol. 8, pp. 1325-1331, 2008. [24] H. Geng, J. Feng, L. M. Stabryla, and S. K. Cho, "Dielectrowetting manipulation for digital microfluidics: creating, transporting, splitting, and merging of droplets," Lab on a Chip, vol. 17, pp. 1060-1068, 2017. [25] H. Geng, J. Feng, L. M. Stabryla, and S. K. Cho, "Droplet manipulations by dielectrowetting: Creating, transporting, splitting, and merging," in 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), pp. 113-116, 2017. [26] Y. C. Lin, K. C. Chuang, T. T. Wang, C. P. Chiu, and S. K. Fan, "Integrated Digital and Analog Microfluidics by EWOD and LDEP," in 2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, pp. 1414-1417, 2006. [27] H.-H. Shen, L.-Y. Chung, and D.-J. Yao, "Improving the dielectric properties of an electrowetting-on-dielectric microfluidic device with a low-pressure chemical vapor deposited Si3N4 dielectric layer," Biomicrofluidics, vol. 9, 2015. [28] H.-Y. Huang, H.-H. Shen, C.-H. Tien, C.-J. Li, S.-K. Fan, C.-H. Liu, W.-S. Hsu, and D.-J. Yao, "Digital Microfluidic Dynamic Culture of Mammalian Embryos on an Electrowetting on Dielectric (EWOD) Chip," PLOS ONE, vol. 10, 2015. [29] H. Y. Huang, H. H. Shen, L. Y. Chung, Y. H. Chung, C. C. Chen, C. H. Hsu, S. K. Fan, and D. J. Yao*, "Fertilization of Mouse Gametes in Vitro Using a Digital Microfluidic System," IEEE Transactions on NanoBioscience, vol. 14, pp. 857-863, 2015. [30] L. Y. Chung, H. H. Shen, Y. H. Chung, C. C. Chen, C. H. Hsu, H. Y. Huang, and D. J. Yao, "In vitro dynamic fertilization by using EWOD device," in 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp. 519-522, 2015. [31] A. Karimpor Malekshah and A. Esmailnejad Moghaddam, "The effect of culture medium volume on in vitro development of mouse embryos," International Journal of Reproductive BioMedicine; Vol 3, 2005. [32] M. Lane and D. K. Gardner, "Effect of incubation volume and embryo density on the development and viability of mouse embryos in vitro," Hum Reprod, vol. 7, pp. 558-62, 1992. [33] Y. Fukui, E. S. Lee, and N. Araki, "Effect of medium renewal during culture in two different culture systems on development to blastocysts from in vitro produced early bovine embryos," J Anim Sci, vol. 74, pp. 2752-8, 1996. [34] B. Heindryckx, A. Rybouchkin, J. Van Der Elst, and M. Dhont, "Effect of culture media on in vitro development of cloned mouse embryos," Cloning, vol. 3, pp. 41-50, 2001. [35] T. Otoi, L. Willingham, T. Shin, D. C. Kraemer, and M. Westhusin, "Effects of oocyte culture density on meiotic competence of canine oocytes," Reproduction, vol. 124, pp. 775-8, 2002. [36] C. C. Li, Y. W. Hsu, H. Y. Huang, and S. K. Fan, "Dynamic embryo culture on a digital microfluidic chip," in 2012 IEEE 6th International Conference on Nano/Molecular Medicine and Engineering (NANOMED), pp. 74-77, 2012. [37] B. Zhao, J. S. Moore, and D. J. Beebe, "Surface-Directed Liquid Flow Inside Microchannels," Science, vol. 291, p. 1023, 2001. [38] C. P. Chiu, W. J. Chen, and S. K. Fan, "Enhanced Droplet Mixer by LDEP on Spiral Microelectrodes," in 2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, pp. 951-954, 2007. [39] J. Noh, D. Yeom, C. Lim, H. Cha, J. Han, J. Kim, Y. Park, V. Subramanian, and G. Cho, Scalability of Roll-to-Roll Gravure-Printed Electrodes on Plastic Foils vol. 33, 2010. [40] T. B. Jones, M. Gunji, M. Washizu, and M. J. Feldman, Dielectrophoretic liquid actuation and nanodroplet formation vol. 89, 2001. [41] T. B. Jones, K. L. Wang, and D. J. Yao, "Frequency-Dependent Electromechanics of Aqueous Liquids: Electrowetting and Dielectrophoresis," Langmuir, vol. 20, pp. 2813-2818, 2004. [42] K. Wang and T. B. Jones, "Saturation effects in dynamic electrowetting", vol. 86, 2005. [43] T. B. Jones, "More about the electromechanics of electrowetting," Mechanics Research Communications, vol. 36, pp. 2-9, 2009. [44] S. Bansal and P. Sen, "Frequency response of a liquid interface segment actuated using AC EWOD," in 2016 3rd International Conference on Emerging Electronics (ICEE), pp. 1-3, 2016. [45] W. Wang, J. Chen, and J. Zhou, "Droplet generating with accurate volume for EWOD digital microfluidics," in 2015 IEEE 11th International Conference on ASIC (ASICON), pp. 1-4, 2015.
|