帳號:guest(18.227.52.176)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉廷淵
作者(外文):Liu, Ting-Yuan
論文名稱(中文):應用於懸浮微粒感測之高傳感效率 CMOS-MEMS 熱致動壓阻感測振盪器設計
論文名稱(外文):CMOS-MEMS Thermal-Piezoresistive Oscillators with High Transduction Efficiency for Aerosol Sensing Applications
指導教授(中文):李昇憲
指導教授(外文):Li, Sheng-Shian
口試委員(中文):方維倫
鄭裕庭
李尉彰
口試委員(外文):Fung, Wei-Leun
Cheng, Yu-Ting
Li, Wei-Chang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:104035502
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:94
中文關鍵詞:高Q值熱致動壓阻感測CMOS-MEMS振盪器高良率製程相位雜訊低元件操作溫度質量感測器懸浮微粒感測器
外文關鍵詞:High quality factorCMOS-MEMSOscillatorsHigh fabrication yieldPhase noiseLow operating temperatureMass sensorAerosol sensor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:143
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文研究是運用國家晶片中心所提供之0.35 m CMOS-MEMS平台及後端電子儀器輔助來實現高性能之熱致動壓阻感測式微機械振盪器,該元件經穩定的後製程後可得到良率極高的Wing-type架構元件,分別是四塊質量塊的Wing-type I以及兩塊質量塊的Wing-type II,在給予Wing-type II元件1.32 mW的直流功率後,即可在空氣中量測到1 MHz的共振訊號,量測結果中除了達成極低之背景電阻訊號(-85 dB)以及在空氣中最大Q值達到620之外,在真空中Q值更可以達到5,600的水準。我們將Wing-type I以及Wing-type II元件之頻率響應數據經由ADS (Agilent Advanced Design System)轉換後得到在一大氣壓下之轉導(Transconductance, gm)分別為16.96 μA/V以及45.66 μA/V,真空中分別為118.4 μA/V以及540.8 μA/V的優異表現。為了實現懸浮微粒感測器,我們首先運用鎖相迴路放大器使元件起振,並利用頻率計數器量測其Allan deviation,Wing-type I與Wing-type II分別在積分時間1 s及0.3 s時擁有89.07 ppb和126.1 ppb的表現,因此可以得到0.082 Hz與0.136 Hz的頻率解析度,對應到質量感測解析度則可達24 fg以及17 fg。接著運用紅外線測溫儀進行元件驅動時的溫度量測,該元件的質量塊溫度與室溫極為接近,我們可假設電流驅動不會造成質量塊的溫度上升,此結果將可避免在未來使用於懸浮微粒量測時可能形成的熱泳現象。最後,我們利用鎖相迴路架設進行Nano-printer的實驗量測,可以觀測到明顯的頻率變化量,可明確證明該元件的確可以作為一個良好的質量感測器。在懸浮微粒的量測中,進行煙霧懸浮微粒以及環境空白實驗的即時濃度量測,搭配商用光學式氣膠感測器進行環境濃度校正,同時搭配量測用的治具與Micro pump來了解環境懸浮微粒濃度對元件造成的影響。
This work utilized CIC/TSMC 0.35 m CMOS-MEMS platform to realize thermal-piezoresistive MEMS oscillators. By using finite element simulation, two wing-type structures were designed, including Wing-type I and Wing-type II, which feature high F-factor (will be defined later) of 0.99 and 1, respectively. After using a stable post-CMOS release process, a high-performance mass sensor sustained by an instrumental Lock-in and PLL circuitry for oscillation is demonstrated. Under a low dc power consumption of only 1.32 mW, the proposed devices reach quality factor of 599 in air and 5,468 in vacuum for Wing-type I while 620 in air and 5,600 in vacuum for Wing-type II with about -85 dB feedthrough level via a fully-differential mode of operation. The motional transconductance gm of the proposed TPR reaches high values both in air (16.96 A/V) and in vacuum (118.4 A/V) for Wing-type I while 45.66 A/V in air and 540.8 A/V in vacuum for Wing-type II. The unique design of the wing-type TPR with its low thermal capacitance (Cth) actuator beams is key to greatly improving the transduction efficiency and sensor sensitivity. In addition, the high performance devices feature room temperature operation at their proof-masses, which would relax the thermophoresis effect if used as an aerosol sensor. The phase noise of the closed-loop measurement reaches -84.52 dBc/Hz in air and -98.15 dBc/Hz in vacuum, respectively. The mass resolution of the proposed thermal-piezoresistive oscillator (TPO) attains 17 fg, which is extracted from the measured Allan deviation of 126.1 ppb. To verify its mass sensing capability, a pico-liter ink jet printing setup was used to demonstrate not only the real time response but also stable frequency shifts corresponding to a number of droplets printed onto the proof-masses of the TPO with a high sensitivity of 1.9463 Hz/pg, well suited for future aerosol detection. The aerosol experiment was measured utilizing the jig and micro pump including the smoking and blank experiment with real-time particle concentration monitoring using the OAS (Model: TSI 8533) as a standard calibrator. A series of measurements are used to understand the effect of aerosol.
目錄
目錄 i
圖目錄 iii
表目錄 ix
摘要 1
第一章 前言 5
1-1 研究動機與背景 5
1-2 文獻回顧 10
第二章 原理分析與模擬 17
2-1 熱致動壓阻感測式振盪器運作原理 17
2-2 熱致動壓阻感測共振器運作原理與模型建立 24
2-2-1 機械運動系統 24
2-2-2 熱機電效應轉換系統 24
第三章 製作過程與結果 29
3-1 CMOS-MEMS元件製程 29
3-2 元件製程結果 32
3-2-1 光學影像及顯微影像檢視 32
3-2-2 雷射都普勒振動儀檢視 35
第四章 量測結果探討與分析 37
4-1 開迴路量測 38
4-2 閉迴路量測 46
4-4 IR量測 55
4-5 質量感測器量測- Nano-Printer量測 58
4-6 懸浮微粒感測器量測-煙霧量測 63
4-7 懸浮微粒感測器量測-環境空白量測 69
第五章 結論與未來研究 79
參考文獻 86
[1] P. Angenendt, “Progress in protein and antibody microarray technology,” Drug Discovery Today, vol. 10, no. 7, pp. 503-511, Apr. 2005.
[2] A. Sreekumar, M. K. Nyati, S. Varambally, T. R. Barrette, D. Ghosh, T. S. Lawrence and A. M. Chinnaiyan, “Profiling of cancer cells using protein microarrays: Discovery of novel radiation-regulated proteins,” Cancer Research, vol. 61, pp. 7585-7593, Oct. 2001.
[3] R. L. Woodbury, S. M. Varnum, and R. C. Zangar, “Elevated HGF levels in sera from breast cancer patients detected using a protein microarray ELISA,” Journal of Proteome Research, vol. 1, no. 3, pp. 233-237, 2002.
[4] I. Balboni, S. M. Chan, M. Kattah, J. D. Tenenbaum, A. J. Buttle, and P. J. Utz, “Multiplexed protein array platforms for analysis of autoimmune diseases,” Annul Review of Immunology, vol. 24, pp. 391-418, Jan. 2006.
[5] M. L. Johnston, I. Kymissis, and K. L. Shepard, “FBAR-CMOS oscillator array for mass-sensing applications, IEEE Sensors Journal, vol. 10, pp. 1042-1047, Jan. 2010.
[6] T. S. J. Lammerink, M. Elwenspoek, and J. H. J. Fluitman, “Optical excitation of micro-mechanical resonators,” in IEEE Micro Electro Mechanical Systems (MEMS), 1991, pp. 160-165.
[7] R. B. Reichenbach, M. K. Zalalutdinov, K. L. Aubin, D. A. zaplewski, B. Ilic, B. H. Houston, H. G. Craighead, and J. M. Parpia, “Resistively actuated micromechanical dome resonators,” Proceedings of SPIE, 2004, pp. 51-58.
[8] S. J. Hyeong, and O. Brand, “High-Q-factor in-plane-mode resonant microsensor platform for gaseous/liquid environment,” IEEE Journal of Microelectromechanical Systems, vol. 17, pp. 483-493, 2008.
[9] A. Rahafrooz, A. Hajjam, and S. Pourkamali, “Rotational mode disk resonators for high-Q operation in liquid,” in IEEE Sensors, pp. 1071-1074, Nov. 2010.
[10] A. Rahafrooz, A. Hajjam, and S. Pourkamali, “Thermal actuation of high frequency micromechanical resonators,” in IEEE SOI conference, 2009, pp. 1-2.
[11] A. Rahafrooz, A. Hajjam, B. Tousifar, and S. Pourkamali, “Thermal actuation, a suitable mechanism for high frequency electromechanical resonators,” in IEEE Micro Electro Mechanical Systems (MEMS), 2010, pp. 200-203.
[12] A. Hajjam, A. Rahafrooz, and S. Pourkamali, “Sub-100ppb/℃ temperature stability in thermally actuated high frequency silicon resonators via degenerate phosphorous doping and bias current optimization,” in IEEE Tech. Dig. International Electron Devices Meeting (IEDM), 2010, pp. 7.5.1-7.5.4.
[13] A. Rahafrooz and S. Pourkamali, “Active self-Q-enhancement in high frequency thermally actuated M/NEMS resonators,” in IEEE Micro Electro Mechanical Systems (MEMS), 2011, pp. 760-763.
[14] A. Hajjam and S. Pourkamali, “Fabrication and Characterization of MEMS-Based Resonant Organic Gas Sensors,” IEEE Sensors Journal, vol. 12, no. 6, pp. 1958-1964, 2012.
[15] Z. Xiong, E. Mairiaux, B. Walter, M. Faucher, L. Buchaillot, and B. Legrand, “5.4 MHz dog-bone oscillating AFM probe with thermal actuation and piezoresistive detection,” in IEEE Micro Electro Mechanical Systems (MEMS), 2013, pp. 592-595.
[16] K. Udeshi and Y.B. Gianchandani, “A DC-powered, tunable, fully mechanical oscillator using in-plane electrothermal actuation,” in IEEE Micro Electro Mechanical Systems (MEMS), 2004, pp. 502-505.
[17] P. G. Steeneken, K. L. Phan, M. J. Goossens, G. E. J. Koops, G. J. A. M. Brom, C. van der Avoort, and J. T. M. van Beek, “Piezoresistive heat engine and refrigerator,” Nature Physics, vol. 7, pp. 354-359, 2011.
[18] A. Rahafrooz and S. Pourkamali, “Fully micromechanical piezo-thermal oscillators,” in IEEE Tech. Dig. International Electron Devices Meeting (IEDM), 2010, pp. 7.2.1-7.2.4.
[19] B. Tousifar, A. Rahafrooz, and S. Pourkamali, “Hydrogen detection using thermally actuated MEMS resonators,” in IEEE Sensors, pp. 1-4, 2011.
[20] A. Hajjam, and S. Pourkamali, “Fabrication and characterization of MEMS-based resonant organic gas sensors,” IEEE Sensors Journal, vol. 12, no. 6, pp. 1958 -1964, 2012.
[21] E. Mehdizadeh, J. C. Wilson, A. Hajjam, A. Rahafrooz, and S. Pourkamali, “Aerosol impactor with embedded MEMS resonant mass balance for real-time particulate mass concentration monitoring,” in IEEE Transducers, pp. 661-664, 2013.
[22] E. Mehdizadeh, V. Kumar, S. Pourkamali, J. Gonzales, and R. Abdolvand, “A two-stage aerosol impactor with embedded MEMS resonant mass balances for particulate size segregation and mass concentration monitoring,” in IEEE Sensors, pp. 1-4, 2013.
[23] M. Maldonado-Garcia, V. Kumar, S. Pourkamali, and J. C. Wilson, “Miniaturized two stage aerosol impactor with chip-scale stages for airborne particulate size separation, ” in IEEE Sensors, pp. 1-4, 2015.
[24] E.-C. Chang, C.-C. Chen, and S.-S. Li, “Real-time mass sensing and dynamic impact monitoring of printed pico-liter droplets realized by a thermal-piezoresistive self-sustained oscillator,” in IEEE Micro Electro Mechanical Systems (MEMS), pp. 1078-1081, 2016.
[25] K. Nakamura, Y. Isono, T. Toriyama and S. Sugiyama, “ Simulation of piezoresistivity in n-type single-crystal silicon on the basis of the first-principles band structure,” APS, Physical Review B, vol. 80, no. 4, pp. 11, 2009.
[26] X. Xia, P. Zhou, X. Li, “Effect of resonance-mode order on mass-sensing resolution of microcantilever sensors” in IEEE Sensors conference, pp.1958-1964, 2008.
[27] H. S. Wasisto, S. Merzsch, A. Stranz, A. Waag, I. Kirsch, E. Uhde, T. Salthammer, and E. Peiner, “Use of self-sensing piezoresistive Si cantilever sensor for determining carbon nanoparticles mass,” Proceedings of SPIE Smart Sensors, Actuators, and MEMS V, vol. 806623, 2011.
[28] A. Hajjam, J.C. Wilson, and S. Pourkamali, “Individual air-borne particle mass measurement using high-frequency micromechanical resonators” IEEE Sensors Journal, vol. 11, issue 11, pp. 2882-2889, Apr. 2011.
[29] A. Hajjam, J.C. Wilson, A. Rahafrooz, and S. Pourkamali, “Detection and mass measurement of individual air-borne particle using high-frequency micromechanical resonators” in IEEE Sensors conference, 2010, pp. 2000-2004.
[30] A. A. Zope, Ranjith HG, J.-H. Chang, C.-C. Chen, D.-J. Yao, and S.-S. Li, “An effective temperature compensation algorithm for CMOS-MEMS thermal-piezoresistive oscillators with sub ppm/ºC thermal stability,” in IEEE Int. Micro Electro Mechanical Systems Conf. (MEMS’17), Las Vegas, NV, Jan. 22-26, 2017, pp. 885-888.
[31] J. T. M. van Beek, P. G. Steeneken, and B. Giesbers, “A 10 MHz piezoresistive MEMS resonator with high Q,” in 2006 IEEE IFCS, pp. 475-480.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *