帳號:guest(3.145.174.168)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳恩平
作者(外文):Chen, En-Ping
論文名稱(中文):求解一般化網路下備品可靠度不確定之冗餘配置問題
論文名稱(外文):Solving Generalized Redundancy Allocation Problem when Redundancy Reliability is Uncertain
指導教授(中文):張國浩
指導教授(外文):Chang, Kuo-Hao
口試委員(中文):林春成
吳建瑋
口試委員(外文):Lin, Chun-Cheng
Wu, Chien-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:104034702
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:45
中文關鍵詞:冗餘配置問題模擬最佳化粒群最佳化排序與選擇
外文關鍵詞:Redundancy allocation problemSimulation optimizationParticle swarm optimizationRanking and selection
相關次數:
  • 推薦推薦:0
  • 點閱點閱:572
  • 評分評分:*****
  • 下載下載:54
  • 收藏收藏:0
近年來,可靠度最佳化問題是一普遍受到重視的問題,而其中關於冗餘配置問題(Redundancy Allocation Problem, RAP)在可靠度最佳化問題裡更是一熱門研究領域。在文獻上,過去探討系統可靠度問題時大部分以串並聯系統作為考量並假設各個備品的可靠度為一個介於零到一之間的精準值,然而在新創的的工程系統下,沒有足夠資訊去確保備品的可靠度,加上串並聯系統無法反映現實中的情況,如:通訊系統,其子系統之間存在複雜的連接情況,所以在應用上會受到限制。在此篇論文中,本研究提出模擬最佳化為基礎的演算法,為粒群演算法為基礎之模擬最佳化(Particle-Swarm-Based Simulation Optimization Method),使得本研究去解決上述複雜系統與備品可靠度不準確之冗餘備品問題,由於此問題的隨機變數龐大與可靠度只能以模擬的方式求得,為使求解速度更有效率,本研究提出之新方法為建立在粒群最佳化(Particle Swarm Optimization, PSO)並改良加入排序與選擇(Ranking and Selection, R&S),使得每次求解過程都能以高信心水準向最佳解收斂。
The redundancy allocation problem (RAP) is an important reliability optimization problem and has been an active area for the past decades. In literature, most of these system reliability problems are considered in series-parallel where the reliability of each components is considered as a precise value. Generalized redundancy allocation problem (GRAP) extends RAP to a more realistic situation where the reliabilities of the components are stochastic in nature and the system can have a complex network structure, for example, its components are connected with each other neither in series nor in parallel but in some logical relationship. In this paper, we proposed a new formulation of GRAP where the reliability of each component is modeled as a random variable with unknown distributions and developed particle-swarm-based simulation optimization method (PSSO) to identify the optimal solution efficiently. An extensive numerical study verifies the effectiveness and efficiency in realistic settings.
目錄
摘要 I
Abstract II
圖目錄 IV
表目錄 V
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.2 研究架構 3
第二章 文獻回顧 5
2.1 冗餘配置問題 5
2.2 模擬最佳化 11
第三章 數學模型 16
3.1 問題定義 16
3.2 符號定義 17
3.3 冗餘配置問題模型 17
第四章 求解方法 19
4.1 可靠度衡量 19
4.2 粒群演算法為基礎之模擬最佳化(Particle-Swarm-Based Simulation Optimization Method) 21
4.2.1 排序與選擇(Ranking and Selection) 26
第五章 數值分析 30
5.1 複雜網路 30
5.2 參數設定 32
5.3 數值分析 33
第六章 結論與未來研究 40
6.1結論 40
6.2未來研究 40
參考文獻 41

Ardakan, M. A., and Hamadani, A. Z. (2014). Reliability optimization of series–parallel systems with mixed redundancy strategy in subsystems. Reliability Engineering & System Safety, 130(2), 132-139.
Beji, N., Jarboui, B., Eddaly, M., and Chabchoub, H. (2010). A hybrid particle swarm optimization algorithm for the redundancy allocation problem. Journal of Computational Science, 1(3), 159-167.
Bellman, R., and Dreyfus, S. (1958). Dynamic programming and the reliability of multicomponent devices. Operations Research, 6(2), 200-206. 

Box, G. E., and Wilson, K. B. (1951). On the experimental attainment of optimum Conditions. Journal of the Royal Statistical Society. Series B (Methodological), 13(1), 1-45.
Carson, Y., and Maria, A. (1997). Simulation optimization: methods and applications. In Proceedings of The 29th Conference on Winter Simulation, 118-126.
Clerc, M., and Kennedy, J. (2002). The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6(1), 58-73.
Chambari, A., Rahmati, S. H. A., and Najafi, A. A. (2012). A bi-objective model to optimize reliability and cost of system with a choice of redundancy strategies. Computers & Industrial Engineering, 63(1), 109-119.
Chern, M. S. (1992). On the computational complexity of reliability redundancy allocation in a series system. Operations Research Letters, 11(5), 309-315.
Coit, D. W., and Smith, A. E. (1996a). Reliability optimization of series-parallel systems using a genetic algorithm. IEEE Transactions on Reliability, 45(2), 254-260.
Coit, D. W., and Smith, A. E. (1996b). Solving the redundancy allocation problem using a combined neural network/genetic algorithm approach. Computers & Operations Research, 23(6), 515-526.
Eberhart, R. C., and Shi, Y. (2000). Comparing inertia weights and constriction factors in particle swarm optimization. Evolutionary Computation, 2000. Proceedings of the 2000 Congress on, 83-88.
Fyffe, D. E., Hines, W. W., and Lee, N. K. (1968). System reliability allocation and a computational algorithm. IEEE Transactions on Reliability, 17(2), 64-69.
Garg, H., and Sharma, S. P. (2013) Multi-objective reliability-redundancy allocation problem using particle swarm optimization. Computers & Industrial Engineering, 64(1), 247-255.
Ghare, P. M., and Taylor, R. E. (1969). Optimal redundancy for reliability in series systems. Operations Research, 17(5), 838-847.
Ha, C., and Kuo, W. (2006). Reliability redundancy allocation: An improved realization for nonconvex nonlinear programming problems. European Journal of Operational Research, 171(1), 24-38.
Houck, C. R., Jeff, J., and Michael, G. K. (1995). A genetic algorithm for function optimization: a Matlab implementation. NCSU-IE TR 95.09.
Jin, Y. X., Cheng, H. Z., Yan, J. Y., and Zhang, L. (2007). New discrete method for particle swarm optimization and its application in transmission network expansion planning. Electric Power Systems Research, 77(3), 227-233.
Kennedy, J. (2011) Particle swarm optimization. Encyclopedia of machine learning, Springer US, 760-766.
Kim, S. H., and Nelson, B. L. (2001). A fully sequential procedure for indifference-zone selection in simulation. ACM Transactions on Modeling and Computer Simulation(TOMCAS), 11(2), 251-273.
Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P.(1983). Optimization by Simulated Annealing. Science, 220, 671-680.
Kong, X., Gao, L., Ouyang, H., and Li, S. (2015). Solving the redundancy allocation problem with multiple strategy choices using a new simplified particle swarm optimization. Reliability Engineering & System Safety, 147-158.
Kulturel-Konak, S., Smith, A. E., and Coit, D. W. (2003). Efficiently solving the redundancy allocation problem using tabu search. IIE Transactions, 35(6), 515-526.
Kuo, W., and Prasad, V. R. (2000). An annotated overview of system- reliability optimization. IEEE Transactions on Reliability, 49(2), 176-187. 

Levitin, G., Lisnianski, A., and Ben-Haim, H. (1998). Redundancy optimization for series-parallel multi-state systems. IEEE Transactions on Reliability, 47(2), 165-172.
Liang, Y. C., and Smith, A. E. (2004). An ant colony optimization algorithm for the redundancy allocation problem (RAP). IEEE Transactions on Reliability, 53(3), 417-423.
Lieber, D., Rubinstein, R. Y., and Elmakis, D. (1997). Quick estimation of rare events in stochastic networks. IEEE Transactions on Reliability, 46(2), 254-265.
Lin, J. Y., and Donaghey, C. E. (1993). A Monte Carlo simulation to determine minimal cut sets and system reliability. In Reliability and Maintainability Symposium, 1993, Proceedings, 246-249.
Lins, I. D., and Droguett, E. L. (2011). Redundancy allocation problems considering systems with imperfect repairs using multi-objective genetic algorithms and discrete event simulation. Simulation Modelling Practice and Theory, 19(1), 362-381.
Mahato, S. K. (2016a) Optimization of Redundancy Allocation Problem with Defuzzified Fuzzy Reliabilities. Imperial Journal of Interdisciplinary Research, 2(2), 266-276.
Mahato, S. K. (2016b) Optimization of System Reliability of an n-Stage Parallel-Series RAP in Precise and Stochastic Environments. Imperial Journal of Interdisciplinary Research, 2(2), 355-343.
Mettas, A. (2000). Reliability allocation and optimization for complex systems. In Reliability and Maintainability Symposium, 2000. Proceedings. Annual, 216-221.
Misra, K. B., and Sharma, U. (1991). An efficient algorithm to solve integer-programming problems arising in system-reliability design. IEEE Transactions on Reliability, 40(1), 81-91.
Nelson, B. L. (2010). Optimization via simulation over discrete decision variables. Informs Tutorials in operations research, 193-207,
Painton, L., and Campbell, J. (1995). Genetic algorithms in optimization of system reliability. IEEE Transactions on Reliability, 44(2), 172- 178.
Poli, R., Kennedy, J., and Blackwell, T. (2007). Particle swarm optimization. Swarm intelligence, 1(1), 33-57.
Ramirez-Marquez, J. E., and Coit, D. W. (2004). A heuristic for solving the redundancy allocation problem for multi-state series-parallel systems. Reliability Engineering & System Safety, 83(3), 341-349.
Shi, L., and Ólafsson, S. (2000). Nested partitions method for global optimization. Operations Research, 48(3), 390-407.
Shier, D. R. (1991). Network Reliability and Algebraic Structure, New York:Oxford University Press.
Tillman, F. A., Hwang, C. L., and Kuo, W. (1977). Optimization techniques for system reliability with redundancy-a review. IEEE Transactions on Reliability, 26(3), 148-155.
Tukey, J. W. (1949). Comparing individual means in the analysis of variance. Biometrics, 5(2), 99-114.
Wang, Z., Chen, T., Tang, K., and Yao, X. (2009, May). A multi-objective approach to redundancy allocation problem in parallel-series systems. In Evolutionary Computation, 2009. CEC'09. IEEE Congress on, 582-589.
Yeh, W. C., Lin, Y. C., Chung, Y. Y., and Chih, M. (2010). A particle swarm optimization approach based on Monte Carlo simulation for solving the complex network reliability problem. IEEE Transactions on Reliability, 59(1), 212-221.
Zhao, R., and Liu, B. (2003). Stochastic programming models for general redundancy-optimization problems. IEEE Transactions on Reliability, 52(2), 182-191.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *