帳號:guest(13.59.106.251)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳怡佳
作者(外文):Wu, Yi-Chia
論文名稱(中文):廠務冰水主機節能分析與最佳化模式及綠色製造之實證研究
論文名稱(外文):Power Consumption Saving Analysis and Optimization Model for Chillers of Factory for Green Manufacturing and the Empirical Study
指導教授(中文):簡禎富
指導教授(外文):Chien, Chen-Fu
口試委員(中文):許嘉裕
鄭家年
口試委員(外文):Hsu, Chia-Yu
Zheng, Jia-Nian
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:104034606
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:43
中文關鍵詞:綠色製造冰水系統節能分析最佳化冰水主機負載偏最小平方法線性規劃
外文關鍵詞:Green ManufacturingChilled Water SystemAnalysis of Power Consumption SavingOptimal Chiller LoadingPartial Least SquareLinear Programming
相關次數:
  • 推薦推薦:0
  • 點閱點閱:571
  • 評分評分:*****
  • 下載下載:25
  • 收藏收藏:0
隨著科技和人類文明的發展,人類對於能源的依賴程度越來越高,能源的製造或消耗過程皆對環境造成一定的汙染,節約能源及更有效率利用能源成為刻不容緩的議題,綠色製造也成為世界各國先進製造策略的一環,企業採取節能措施不僅能降低成本,更達到環保的目的。在一般製造業中,冰水系統為廠務設備中為耗能的機組,其中冰水主機又占了60%,因此冰水主機成為廠務節能的首要目標。目前廠務多半憑藉自身經驗去調整各台冰水主機的可控參數,缺乏一個系統化的方法去做節能分析以及最佳化冰水主機的參數調整,本研究提出一個最佳化冰水主機參數調整的架構以降低總耗電量,先以兩步驟的迴歸模型建立冰水主機耗能模型,使用一般廠務較易蒐集的參數預估冰水主機的負載,再以負載得出其耗電量,接著檢驗迴歸模型估計的係數,不符合物理意義之模型以偏最小平方法重新建立。在不降低原先可提供的冷卻能力條件下,利用線性規劃得出各台冰水主機的最佳負載分配,並將決策變數設為廠務可直接調整的冰水主機設定溫度,使最佳化的結果更容易應用,最後比較原始數據與最佳化後系統總耗電量評估其效益,在模型線上應用方面,可利用本研究給出各冰水主機設定溫度、最佳化頻率及開關機組合之建議,作為實際操作之參考。本研究也與台灣某面板廠合作進行實證研究,利用廠務蒐集的冰水主機實際運轉數據驗證本研究提出之最佳化模式的效度。
With the advancement of technology and civilization, humans are increasingly rely on energy. Heavy environmental pollution occurs during the process of energy generating and energy consumption. Energy saving and effective energy utilization have become critical issues for green manufacturing that is one of advanced manufacturing strategies in leading nations. Implementations of energy saving approaches in companies can not only reduce cost but also achieve environmental friendly. In manufacturing industry, a chilled water system is the most power consuming unit in factory facilities. Chillers consume about 60% of total power in the whole chilled water system, hence, chillers are the main target of energy saving. This study proposed a framework of optimizing setting parameters of chillers to reduce total power consumption. The chiller power consumption model was first established using multiple regression. Partial Least Square(PLS) is applied to correct the estimated value of the regression models. Then, under the constraint of not to lower the total heat-extraction capability, we derived the setting temperature of chilled water supply of each chiller using linear programming. In terms of the applications of this research, we provided some suggestions about the setting temperature of each chiller, frequency of the parameter optimization and opening chillers combinations for operators. We conducted an empirical study in a TFT-LCD company in Taiwan to validate the proposed framework.
目錄 i
表目錄 iii
圖目錄 iv
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 3
1.3 論文結構 4
第二章 文獻回顧 5
2.1 冰水系統 5
2.2 冰水主機性能模式 8
2.3 冰水主機最佳化模式 9
第三章 冰水主機系統分析與最佳化運轉架構 11
3.1 問題定義 13
3.2 資料準備 13
3.2.1 資料蒐集與資料轉換 14
3.2.2 資料檢視與資料清理 14
3.3 模型建立 16
3.3.1 耗電量模型、負載模型、出水溫模型 16
3.3.2 係數檢驗、共線性檢驗及模型修正 17
3.3.3 模型效度檢驗 18
3.4 冰水主機設定溫度最佳化 19
3.5 結果評估及模型應用 21
第四章 實證研究 23
4.1 問題定義 23
4.2 資料準備 23
4.2.1 資料蒐集與資料轉換 23
4.2.2 資料檢視與資料清理 24
4.3 模型建立 28
4.3.1 耗電量模型、負載模型、出水溫模型 28
4.3.2 共線性檢驗及模型修正 28
4.3.3 模型效度檢驗 32
4.4 冰水主機設定溫度最佳化 32
4.5 結果評估 34
4.6 模型線上應用 35
第五章 結論與後續研究方向 39
5.1 研究結論 39
5.2 後續研究方向 39
參考文獻 41
台灣區電機電子工業同業公會全球資訊網。上網日期:2017年5月7日。網址:http://www.teema.org.tw/
陳輝俊 (2006),產業節能技術手冊-電機電子業, 經濟部能源局。
游振偉(2015),工業部門溫室氣體減量策略與輔導機制保障,綠基會通訊,41期,頁28-30。
經濟部能源局,能源統計月報。上網日期:2016年11月7日。網址:http://www.moeaboe.gov.tw/
簡禎富、許嘉裕(2014),資料挖礦與大數據分析,前程文化,台北。
ASHRAE guideline 14-2002 Measurement of energy and demand savings (2002), ASHRAE Standards Committee.
Braun, J. E., Klein, S. A., Beckman, W. A., and Mitchell, J. W. (1989), “Methodologies for optimal control of chilled water systems without storage,” ASHRAE Transactions, Vol. 95, pp. 652-662.
Chang, Y. C. (2004), “ A novel energy conservation method—optimal chiller loading,” Electric Power Systems Research, Vol. 69, No. 2, pp. 221-226.
Chang, Y. C., Lin, J. K., and Chuang, M. H. (2005), “Optimal chiller loading by genetic algorithm for reducing energy consumption,” Energy and Buildings, Vol. 37, No. 2, pp. 147-155.
Chang, Y. C., Chen, W. H., Lee, C. Y., and Huang, C. N. (2006), “Simulated annealing based optimal chiller loading for saving energy,” Energy Conversion and Management, Vol. 47, No. 15, pp. 2044-2058.
Chien, C. F., Peng, J. T., and Yu, H. C. (2016), “Building energy saving performance indices for cleaner semiconductor manufacturing and an empirical study,” Computers & Industrial Engineering, Vol. 99, pp. 448-457.
Fornell, C., and Bookstein, F. L. (1982), “Two structural equation models: LISREL and PLS applied to consumer exit-voice theory,” Journal of Marketing research, pp. 440-452.
Gordon, J. M., and Ng, K. C. (1995), “Predictive and diagnostic aspects of a universal thermodynamic model for chillers,” International Journal of Heat and Mass Transfer, Vol. 38, No. 5, pp. 807-818.
Gordon, J. M., Ng, K. C., and Chua, H. T. (1995), “Centrifugal chillers: thermodynamic modelling and a diagnostic case study,” International journal of Refrigeration, Vol. 18, No. 4, pp. 253-257.
Gordon, J. M., Ng, K. C., Chua, H. T., and Lim, C. K. (2000), “How varying condenser coolant flow rate affects chiller performance: thermodynamic modeling and experimental confirmation,” Applied Thermal Engineering, Vol. 20, No. 13, pp. 1149-1159.
Hao, X., Zhang, G., Chen, Y., Zou, S., and Moschandreas, D. J. (2007), “A combined system of chilled ceiling, displacement ventilation and desiccant dehumidification,” Building and Environment, Vol. 42, No. 9, pp. 3298-3308.
Hydeman, M., and Gillespie Jr, K. L. (2002), “Tools and techniques to calibrate electric chiller component models/Discussion,” ASHRAE Transactions, Vol. 108, No. 733.
Lee, T. S. (2004) , “Thermodynamic Modeling and Experimental Validation of Screw Liquid Chillers,” Ashrae Transactions, Vol. 110, No. 1.
Lee, W. S., and Lin, L. C. (2009), “Optimal chiller loading by particle swarm algorithm for reducing energy consumption,” Applied Thermal Engineering, Vol. 29, No. 8, pp. 1730-1734.
Lee, W. S., Chen, Y. T., and Kao, Y. (2011), “Optimal chiller loading by differential evolution algorithm for reducing energy consumption,” Energy and Buildings, Vol. 43,No. 2, pp. 599-604.
Lu, L., Cai, W., Xie, L., Li, S., and Soh, Y. C. (2005) , “HVAC system optimization—in-building section,” Energy and Buildings, Vol.37, No. 1, pp. 11-22.
Marquaridt, D. W. (1970), “Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation,” Technometrics, Vol. 12, No. 3, pp. 591-612.
Mason, C. H., and Perreault Jr, W. D. (1991), “Collinearity, power, and interpretation of multiple regression analysis,” Journal of Marketing research, pp. 268-280.
Qureshi, T. Q., and Tassou, S. A. (1996), “Variable-speed capacity control in refrigeration systems,” Applied Thermal Engineering, Vol. 16, No. 2, pp. 103-113.
Sezgan, O., B. Smith, and M. Moezzi (1996), “Building performance evaluation and tracking,” Berkeley, Calif.: Lawrence Berkeley National Laboratories .
Sreedharan, P., and Haves, P. (2001), “Comparison of chiller models for use in model-based fault detection,” Lawrence Berkeley National Laboratory.
ter Braak, C. J., and Juggins, S. (1993), “Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages,” In Twelfth International Diatom Symposium, Springer Netherlands, pp. 485-502.
Wold, H. (1966), “Estimation of principal components and related models by iterative least squares,” Multivariate Analysis, Vol. 1, pp. 391-420.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *