帳號:guest(18.225.195.163)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):孫俊弘
作者(外文):Sun, Jyun Hong
論文名稱(中文):以主成份分析與深度神經網路為基之專利品質評估方法論:以物聯網應用於製造業為案例
論文名稱(外文):Method of Estimate for the Patent Quality Based on Principal Component Analysis and Deep Neural Networks: The Case of Internet of Things Applied in Manufacturing Industries
指導教授(中文):張瑞芬
指導教授(外文):Trappey, Amy J.C.
口試委員(中文):江梓安
鄭元杰
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:104034602
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:115
中文關鍵詞:專利指標專利品質專利商品化主成份分析法深度神經網路
外文關鍵詞:patent indicatorspatent qualitypatent commercializationprincipal component analysisdeep neural networks
相關次數:
  • 推薦推薦:0
  • 點閱點閱:185
  • 評分評分:*****
  • 下載下載:27
  • 收藏收藏:0
在知識經濟與工業4.0的世代下,全球產品生產成本競爭逐漸白熱化,公司如何發展關鍵技術,並發展相關的專利就變得非常重要,以藉此將專利商品化,進而獲取利益。但大量的專利資料會在企業辨識專利內容時耗費大量的時間,傳統質化的專利評價方法多仰賴專家來判斷專利價值,雖然此法可以明確地定義出適當的專利價值,但耗費的時間也長,同時也招致人為主觀的評估結果。因此本研究提出量化的專利評價方法,擬透過Python程式來建構一個專利品質分類系統,以進行專利評價的研究,藉由專利指標的選擇,將專利做價值評估,來探討哪些專利為企業的核心且應著重的部分,因為專利評價與研發評估具有密切的關聯,透過專利評價可以幫助管理者瞭解專利價值及辨識相關的商業機會,進而決定專利技術的發展方向。由於本研究是要幫助企業能更快速地辨識專利的價值,所以研究方法的流程主要包含三大步驟,首先,先定義專利來源與進行專利文件與專利指標數值資料的搜集;第二步為選擇專利指標的分析方法,本研究利用主成份分析法進行專利指標的選擇;第三步則是利用深度神經網路來進行專利品質的模擬。本研究選擇物聯網 (Internet of Things, IoT) 應用於製造業為案例,並透過深度神經網路進行專利品質分類評估以找出高價值專利,並以全球與台灣專利權人持有的高價值專利為分析標的,進而探討這些高價值專利的技術佈局,以提供台灣專利權人在物聯網技術研發方面的建議,作為台灣未來競爭優勢與技術研發策略擬定的參考依據。
In the era of knowledge economy and industry 4.0, global production costs for products have become increasingly competitive, how companies obtain benefits of patent commercialization by developing key technologies to make applications for related patents becomes very important. However, a large quantity of patent information requires much time for enterprises to identify patent values. Traditional evaluation methods of patent quality rely on experts to determine patent values, which requires long time spent and ends with subjective assessment results. Therefore, the research proposes a quantitative evaluation method of patent quality by constructing a Python-based system for patent quality classification to research on patent evaluations. Evaluation of patent values by taking patent indicators into consideration helps explore what kind of patents are fundamental and essential for enterprises. Patent evaluations help managers and R&D personnel understand patent values and identify related business opportunities, which further determines the directions of patented technology development. The process for the research method is divided into three parts. The first part is patent retrieval and patent indicators collections. Second part introduces Principal Component Analysis (PCA) to make key patent indicators selection. Third part ends with the Deep Neural Networks (DNN) analysis result. The research takes Internet of Things (IoT) applied in manufacturing industries as the example case, and find out high-value patents by using DNN to classify patent quality. Moreover, the research puts many efforts into both worldwide high-value patents and those of Taiwan to explore their portfolios, which provides useful suggestions for Taiwan assignees in the R&D strategies of IoT technologies.
中文摘要 I
Abstract II
誌謝辭 III
目錄 IV
表目錄 VII
圖目錄 X
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 4
1.3 研究流程圖 5
第二章 文獻探討 7
2.1專利指標訂定 7
2.1.1專利範圍 7
2.1.2專利核准時間 8
2.1.3專利發明人數量 8
2.1.4被引證次數 8
2.1.5引證次數 9
2.1.6專利申請範圍總項數 9
2.1.7專利家族數 9
2.1.8專利範圍文字長度 10
2.1.9引證非專利文獻次數 10
2.2專利評價模型 11
2.2.1質化方法 11
2.2.2量化方法 12
2.2.3質化與量化方法的優缺點比較 12
2.3分析方法 13
2.3.1主成份分析法 13
2.3.2 類神經網路 15
2.4 案例背景-物聯網 (Internet of Things, IoT) 19
2.4.1 物聯網技術 19
2.4.2 物聯網的技術標準 20
2.4.3 物聯網的標準必要專利 22
第三章 研究方法與流程 25
3.1 研究方法流程 25
3.2 資料來源與搜集 26
3.2.1專利檢索範圍說明 26
3.2.2主要專利權人分析 33
3.2.3專利資料指標擷取方式 34
3.3 專利指標選擇的分析方法 38
3.3.1適合度分析 38
3.3.2主成份分析法 38
3.4利用深度神經網路訓練專利指標的權重 42
3.5利用所建構的深度神經網路模型進行專利品質評估 46
第四章 案例研究 48
4.1 軟體需求 48
4.2 專利品質劃分依據說明 49
4.3 專利品質設計模式分析 49
4.3.1利用主成份分析擷取關鍵指標 49
4.3.2深度神經網路訓練分類模型 55
4.3.3專利品質評估-全球專利權人 66
4.4 案例解釋 72
4.4.1專利品質評估-台灣專利權人 72
4.4.2整體案例解析 76
第五章 結論與建議 79
參考文獻 81
附件A 高通的高價值專利清單 98
附件B 愛立信的高價值專利清單 108
附件C 宏達電的次高價值專利清單 110
附件D 工研院的次高價值專利清單 111
附件E 宏碁的次高價值專利清單 112
附件F 倒傳遞類神經網路的訓練分類結果 113

英文文獻
1. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys & Tutorials, 17(4), 2347-2376.
2. Allison, J. R., Lemley, M. A., & Schwartz, D. L. (2014). Understanding the Realities of Modern Patent Litigation.
3. Avanci (2016). Avanci launches one-stop licensing platform to accelerate wireless connectivity for the Internet of Things. Retrieved from Avanci website: http://avanci.com/release/avanci-launches/
4. Barney, J. A. (2001). Comparative patent quality analysis. NACV White Paper, 6- 14.
5. Barney, J. A. (2010). Statistic measurement of patent quality, Ocean Tomo, LLC.
6. Baron, J., & Pohlmann, T. (2015). Mapping standards to patents using databases of declared standard-essential patents and systems of technological classification. Searle Center on Law, Regulation and Economic Growth Working Paper.
7. Bekkers, R., Bongard, R., & Nuvolari, A. (2011). An empirical study on the determinants of essential patent claims in compatibility standards. Research Policy, 40(7), 1001-1015.
8. Berger, F., Blind, K., & Thumm, N. (2012). Filing behaviour regarding essential patents in industry standards. Research Policy, 41(1), 216-225.
9. Bi, Z., Xu, L., & Wang, C. (2014). Internet of things for enterprise systems of modern manufacturing. IEEE Transactions on industrial informatics, 10(2), 1537-1546.
10. Branstetter, L. (2005). Exploring the link between academic science and industrial innovation. Annales d'Economie et de Statistique, 119-142.
11. BrazilGovNews. (2017). Brazilian government signs USD 200M deal on tech development. Retrieved from BrazilGovNews website: http://www.brazilgovnews.gov.br/news/2017/03/government-signs-agreement-to-invest-usd-200-million-in-technological-development
12. Brünger-Weilandt, S., Geiss, D., Herlan, G., & Stuike-Prill, R. (2011). Quality–Key factor for high value in professional patent, technical and scientific information. World Patent Information, 33(3), 230-234.
13. Bulsara, H. P., Gandhi, S., & Porey, P. D. (2010). Commercialization of technology innovations and patents. Patent Commercialization, 12.
14. Cai, X., Hu, S., & Lin, X. (2012, May). Feature extraction using restricted Boltzmann machine for stock price prediction. In Computer Science and Automation Engineering (CSAE), 2012 IEEE International Conference on (Vol. 3, pp. 80-83). IEEE.
15. Calcagno, M. (2008). An investigation into analyzing patents by chemical
structure using Thomson’s Derwent World Patent Index codes. World Patent
Information, 30(3), 188-198.
16. Callaert, J., Van Looy, B., Verbeek, A., Debackere, K., & Thijs, B. (2006).Traces of prior art: An analysis of non-patent references found in patent documents. Scientometrics, 69(1), 3-20.
17. Carrillo, F. J. (2015). Knowledge-based development as a new economic culture. Journal of Open Innovation: Technology, Market, and Complexity, 1(1), 15.
18. Cassiman, B., Veugelers, R., & Zuniga, P. (2008). In search of performanceeffects of (in) direct industry science links. Industrial and Corporate Change, 17(4), 611-646.
19. Cesana, M., & Redondi, A. E. (2017). IoT Communication Technologies for Smart Cities. In Designing, Developing, and Facilitating Smart Cities (pp. 139-162). Springer International Publishing.
20. Cohen, J. A. (2011). Intangible assets: valuation and economic benefit (Vol. 273). John Wiley & Sons.
21. Committee of Communications Industry Development Ministry of Economic Affairs. (2016). MOEA teams up with Qualcomm to accelerate the pace in building IoT ecosystem in Taiwan. Retrieved from MOEA website: https://www.communications.org.tw/en/events/item/8921-1107.html
22. Cosovic, M., Tsitsimelis, A., Vukobratovic, D., Matamoros, J., & Anton-Haro, C. (2017). 5G Mobile Cellular Networks: Enabling Distributed State Estimation for Smart Grid. arXiv preprint arXiv:1703.00178.
23. Cournapeau, D. (2016). scikit-learn - Machine Learning in Python. Retrieved from scikit-learn website: http://scikit-learn.org/stable/index.html
24. Datta, S. K., Gyrard, A., Bonnet, C., & Boudaoud, K. (2015, August). OneM2M architecture based user centric IoT application development. In Future Internet of Things and Cloud (FiCloud), 2015 3rd International Conference on (pp. 100-107). IEEE.
25. Delcamp, H. (2011). Essential patents in pools: Is value intrinsic or induced?.
26. Diazcacho, M., Delgado, E., Falcon, P., & Barreiro, A. (2015, May). IoT integration on industrial environments. In Factory Communication Systems (WFCS), 2015 IEEE World Conference on (pp. 1-7). IEEE.
27. Díaz-Zayas, A., García-Pérez, C. A., Recio-Pérez, Á. M., & Merino, P. (2016, April). 3GPP standards to deliver LTE connectivity for IoT. In Internet-of-Things Design and Implementation (IoTDI), 2016 IEEE First International Conference on (pp. 283-288). IEEE.
28. DIN. (2016). German Standardization Roadmap – Industry 4.0 (Version 2). Retrieved from DIN website: http://www.din.de/blob/65354/f5252239daa596d8c4d1f24b40e4486d/roadmap-i4-0-e-data.pdf
29. Ericsson. (2016). NB-IoT: a sustainable technology for connecting billions of devices. Retrieved from Ericsson website: https://www.ericsson.com/en/publications/ericsson-technology-review/archive/2016/nb-iot-a-sustainable-technology-for-connecting-billions-of-devices
30. Farooq, M. U., Waseem, M., Mazhar, S., Khairi, A., & Kamal, T. (2015). A review on internet of things (IoT). International Journal of Computer Applications, 113(1).
31. Fischer, T., & Leidinger, J. (2014). Testing patent value indicators on directly observed patent value—An empirical analysis of Ocean Tomo patent auctions. Research Policy, 43(3), 519-529.
32. Flore, D. (2016). 3gpp standards for the internet-of-things. Recuperado el, 25.
33. Gozalvez, J. (2016a). Fifth-Generation Technologies Trials [Mobile Radio]. IEEE Vehicular Technology Magazine, 11(2), 5-13.
34. Gozalvez, J. (2016b). New 3GPP standard for IoT [mobile radio]. IEEE Vehicular Technology Magazine, 11(1), 14-20.
35. Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future generation computer systems, 29(7), 1645-1660.
36. Guellec, D., & Van Pottelsberghe de la Potterie, B. (2000). Applications, grants and the value of patent. Economics letters, 69(1), 109-114.
37. Guellec, D., & Van Pottelsberghe de la Potterie, B. (2002). The value of patents and patenting strategies: countries and technology areas patterns. Economics of Innovation and New Technology, 11(2), 133-148.
38. Hair, J., Black, W., Babin, B., & Anderson, R. (2010). Multivariate Data Analysis. Pearson, NY, pp. 116.
39. Hall, B. H., Jaffe, A., & Trajtenberg, M. (2005). Market value and patent citations. RAND Journal of economics, 16-38.
40. Haller, S., Karnouskos, S., & Schroth, C. (2008, September). The internet of things in an enterprise context. In Future Internet Symposium (pp. 14-28). Springer Berlin Heidelberg.
41. Harhoff, D., Scherer, F. M., & Vopel, K. (2003). Citations, family size, opposition and the value of patent rights. Research policy, 32(8), 1343-1363.
42. Harhoff, D., & Wagner, S. (2009). The duration of patent examination at the European Patent Office. Management Science, 55(12), 1969-1984.
43. Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A. R., Jaitly, N., ... & Kingsbury, B. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, 29(6), 82-97.
44. Hsieh, C. H. (2013). Patent value assessment and commercialization strategy. Technological Forecasting and Social Change, 80(2), 307-319.
45. Hunter, J. (2016). Matplotlib. Retrieved from matplotlib website: http://matplotlib.org/
46. IEC. (2016). About IEC. Retrieved from IEC website: http://www.iec.ch/about/
47. IERC. (2015). Internet of Things Position Paper on Standardization for IoT technologies EUROPEAN RESEARCH CLUSTER ON THE INTERNET OF THINGS. Retrieved from IERC website: http://www.internet-of-things-research.eu/pdf/IERC_Position_Paper_IoT_Standardization_Final.pdf
48. ISO. (2016). About ISO. Retrieved from ISO website: https://www.iso.org/about-us.html
49. Jhu, S. B., Wei, C. P., and Du, C. C. (2010). Research and Prospect for the Application of Internet of Things in Sensing and Safety. China Safety Science Journal, 20 (11), 164 - 170.
50. Juntunen, P., Liukkonen, M., Lehtola, M., & Hiltunen, Y. (2013). Cluster analysis by self-organizing maps: An application to the modelling of water quality in a treatment process. Applied Soft Computing, 13(7), 3191-3196.
51. Karvonen, M., & Kässi, T. (2013). Patent citations as a tool for analysing the early stages of convergence. Technological Forecasting and Social Change, 80(6), 1094-1107.
52. Kaura-aho, R. (2016). Scalable IoT traffic generation system using LTE network.
53. Kim, S. J., Yoon, Y. C., Kim, B. H., Lee, B. Y., & Kang, H. J. (2015). Knowledge-based economy and intellectual capital: The impact of national intellectual and information capitals on economic growth in Korea. International Journal of Business and Information, 1(1).
54. Kunz, A., Prasad, A., Samdanis, K., Husain, S., & Song, J. (2015, October). Enhanced 3GPP system for Machine Type Communications and Internet of Things. In Standards for Communications and Networking (CSCN), 2015 IEEE Conference on (pp. 48-53). IEEE.
55. Kuo, R. J., Ho, L. M., & Hu, C. M. (2002). Integration of self-organizing feature map and K-means algorithm for market segmentation. Computers & Operations Research, 29(11), 1475-1493.
56. Kuremoto, T., Kimura, S., Kobayashi, K., & Obayashi, M. (2014). Time series forecasting using a deep belief network with restricted Boltzmann machines. Neurocomputing, 137, 47-56.
57. Lambin, J. J. (2014). A Knowledge-Based Economy. In Rethinking the Market Economy (pp. 133-146). Palgrave Macmillan UK.
58. Lanjouw, J. O., Pakes, A., & Putnam, J. (1998). How to count patents and value intellectual property: The uses of patent renewal and application data. The Journal of Industrial Economics, 46(4), 405-432.
59. Lanjouw, J. O., & Schankerman, M. (2001). Characteristics of patent litigation: a window on competition. RAND journal of economics, 129-151.
60. Lanjouw, J. O., & Schankerman, M. (2004). Patent quality and research productivity: Measuring innovation with multiple indicators. The Economic Journal, 114(495), 441-465.
61. Lerner, J. (1994). The importance of patent scope: an empirical analysis. The RAND Journal of Economics, 319-333.
62. LexInnova. (2016). Internet of Things (IoT) Patent Landscape Analysis. Retrieved from LexInnova website: http://www.lex-innova.com/resources-reports/?id=33
63. Lv, Y., Duan, Y., Kang, W., Li, Z., & Wang, F. Y. (2015). Traffic flow prediction with big data: a deep learning approach. IEEE Transactions on Intelligent Transportation Systems, 16(2), 865-873.
64. Madakam, S., Ramaswamy, R., & Tripathi, S. (2015). Internet of Things (IoT): A literature review. Journal of Computer and Communications, 3(05), 164.
65. Mamoshina, P., Vieira, A., Putin, E., & Zhavoronkov, A. (2016). Applications of deep learning in biomedicine. Molecular pharmaceutics, 13(5), 1445-1454.
66. Martinez, C. (2010). Insight into different types of patent families.
67. Martínez, C. (2011). Patent families: when do different definitions really matter?. Scientometrics, 86(1), 39-63.
68. Martinez-Ruiz, A., & Aluja-Banet, T. (2009). Toward the definition of a structural equation model of patent value: PLS path modelling with formative constructs. REVSTAT–Statistical Journal, 7(3), 265-290.
69. Matutes, C., Regibeau, P., & Rockett, K. (1996). Optimal patent design and the diffusion of innovations. The RAND Journal of Economics, 60-83.
70. McKinney, W. (2016). Pandas - Python Data Analysis Library. Retrieved from PyData website: http://pandas.pydata.org/
71. Miorandi, D., Sicari, S., De Pellegrini, F., & Chlamtac, I. (2012). Internet of things: Vision, applications and research challenges. Ad Hoc Networks, 10(7), 1497-1516.
72. Munari, F., & Oriani, R. (Eds.). (2011). The economic valuation of patents: methods and applications. Edward Elgar Publishing.
73. Naim, N. F. B. H. M., & Ibrahim, A. A. A. (2014, May). Aesthetics in E-Learning Websites Interface Design Using Kansei Engineering Method. In Information Science and Applications (ICISA), 2014 International Conference on (pp. 1-4). IEEE.
74. OECD (2009). OECD Patent Statistics Manual. Retrieved from United Nations Statistics Division website: unstats.un.org/unsd/EconStatKB/Attachment553.aspx?AttachmentType=1
75. Oliphant, T. (2016). NumPy. Retrieved from NumPy website: http://www.numpy.org/
76. Petruzzelli, A. M., Rotolo, D., & Albino, V. (2015). Determinants of patent citations in biotechnology: An analysis of patent influence across the industrial and organizational boundaries. Technological Forecasting and Social Change, 91, 208-221.
77. Pohlmann, T., Neuhäusler, P., & Blind, K. (2015). Standard essential patents to boost financial returns. R&D Management.
78. Qian, X., & Zhang, J. (2010, November). Study on the structure of “Internet of Things (IOT)” business operation support platform. In Communication Technology (ICCT), 2010 12th IEEE International Conference on (pp. 1068-1071). IEEE.
79. Qualcomm (2017a). Qualcomm Technologies Announces Enhancements to the Qualcomm Network with New IoT Connectivity Platform and Expanded Wi-Fi SON Features. Retrieved from Qualcomm website: https://www.qualcomm.com/news/releases/2017/01/03/qualcomm-technologies-announces-enhancements-qualcomm-network-new-iot
80. Qualcomm (2017b). 802.11ac featuring MU|EFX Multi-user MIMO. Retrieved from Qualcomm website: https://www.qualcomm.com/products/features/80211ac
81. Régibeau, P., & Rockett, K. (2010). Innovation cycles and learning at the patent office: Does the early patent get the delay?. The Journal of Industrial Economics, 58(2), 222-246.
82. Reitzig, M. (2004). Improving patent valuations for management purposes—validating new indicators by analyzing application rationales. Research Policy, 33(6), 939-957.
83. Rysman, M., & Simcoe, T. (2008). Patents and the performance of voluntary standard-setting organizations. Management science, 54(11), 1920-1934.
84. Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks, 61, 85-117.
85. Schoenmakers, W., & Duysters, G. (2010). The technological origins of radical inventions. Research Policy, 39(8), 1051-1059.
86. Sourceforge (2013). Math toolkit. Retrieved from SourceForge website: https://sourceforge.net/projects/mathtoolkit/
87. Squicciarini, M., Dernis, H., & Criscuolo, C. (2013). Measuring patent quality: Indicators of technological and economic value. OECD Science, Technology and Industry Working Papers, 2013(3), 0_1.
88. Standardization Administration of the People's Republic of China (SAC). (2015). The National Intelligent Manufacturing System Standards Guide. Retrieved from Ministry of Industry and Information Technology of the People’s Republic of China website: http://www.miit.gov.cn/n1146295/n1652858/n1653100/n3767755/c4376584/part/4376585.pdf
89. Sternitzke, C. (2008). The international preliminary examination of patent applications filed under the Patent Cooperation Treaty—a proxy for patent value?. Scientometrics, 78(2), 189-202.
90. Sum, N. L., & Jessop, B. (2013). Competitiveness, the knowledge-based economy and higher education. Journal of the Knowledge Economy, 4(1), 24-44.
91. Swetina, J., Lu, G., Jacobs, P., Ennesser, F., & Song, J. (2014). Toward a standardized common M2M service layer platform: Introduction to oneM2M. IEEE Wireless Communications, 21(3), 20-26.
92. Tao, F., Cheng, Y., Xu, L., Zhang, L., & Li, B. H. (2014). CCIoT-CMfg: cloud computing and internet of things-based cloud manufacturing service system. IEEE Transactions on Industrial Informatics, 10(2), 1435-1442.
93. Thomson Innovation. (2002). Read Patents, not just Papers. Retrieved from Taipei Medical University website: http://pt.tmu.edu.tw/%A4H%A4~%B0%F6%B0V%C1%BF%B8q/%B1M%A7Q%C0%CB%AF%C1%BBP%B1M%A7Q%A4%C0%AAR.pdf
94. Tong, X., & Frame, J. D. (1994). Measuring national technological performance with patent claims data. Research Policy, 23(2), 133-141.
95. Trajtenberg, M. (1990). A penny for your quotes: patent citations and the value of innovations. The Rand Journal of Economics, 172-187.
96. Trappey, A. J., Trappey, C. V., Wu, C. Y., & Lin, C. W. (2012). A patent quality analysis for innovative technology and product development. Advanced Engineering Informatics, 26(1), 26-34.
97. Trappey, A. J., Trappey, C. V., Govindarajan, U. H., Chuang, A. C., & Sun, J. J. (2016a). A review of essential standards and patent landscapes for the Internet of Things: A key enabler for Industry 4.0. Advanced Engineering Informatics.
98. Trappey, A. J., Trappey, C. V., Govindarajan, U. H., Sun, J. J., & Chuang, A. C. (2016b). A review of technology standards and patent portfolios for enabling Cyber-Physical Systems in advanced manufacturing. IEEE Access, 4, 7356-7382.
99. Trappey, C. V., & Wu, H. Y. (2008). An evaluation of the time-varying extended logistic, simple logistic, and Gompertz models for forecasting short product lifecycles. Advanced Engineering Informatics, 22(4), 421-430.
100. Van Zeebroeck, N., & Van Pottelsberghe de la Potterie, B. (2011). Filing strategies and patent value. Economics of innovation and new technology, 20(6), 539-561.
101. Wanetick, D. (2010). How Patent Vulnerability Impacts Valuation. The CPA Journal, 80(11), 3-5.
102. Wang, Y. P. E., Lin, X., Adhikary, A., Grövlen, A., Sui, Y., Blankenship, Y., ... & Razaghi, H. S. (2016). A Primer on 3GPP Narrowband Internet of Things (NB-IoT). arXiv preprint arXiv:1606.04171.
103. Waskom, M. (2015). Seaborn: statistical data visualization. Retrieved from PyData website: http://seaborn.pydata.org/
104. Wonglimpiyarat, J. (2006). Management of government research and development towards commercialisation. International Journal of Management Practice, 2(3), 214-225.
105. Wu, J. L., Chang, P. C., Tsao, C. C., & Fan, C. Y. (2016). A patent quality analysis and classification system using self-organizing maps with support vector machine. Applied Soft Computing, 41, 305-316.
106. Xu, L., He, W., & Li, S. (2014). Internet of things in industries: A survey. IEEE Transactions on industrial informatics, 10(4), 2233-2243.
107. Xu, K., Lin, H., Lin, Y., Xu, B., Yang, L., & Zhang, S. (2016). Patent Retrieval Based on Multiple Information Resources. In Information Retrieval Technology (pp. 125-137). Springer International Publishing.
108. Yang, W. K., Wang, M., Zou, J. K., Hua, M., & Zhang, J. (2015). Power-and Spectrally-Efficient Network Access for Cellular Machine-Type Communications. arXiv preprint arXiv:1512.05500.
109. Yang, Z., Yue, Y., Yang, Y., Peng, Y., Wang, X., & Liu, W. (2011, July). Study and application on the architecture and key technologies for IOT. In Multimedia Technology (ICMT), 2011 International Conference on (pp. 747-751). IEEE.
110. Yoo, S. K. (2015). ISO/IEC JTC 1/WG 10 Working Group on Internet of Things. Retrieved from IoT Week website: http://iot-week.eu/wp-content/uploads/2015/06/07-JTC-1-WG-10-Introduction.pdf
111. Young-Ki, K., Seung-Jun, L., & Seong-Taek, P. (2016). A Study on Patent Valuation Important Factors: Focus on China Industry. Indian Journal of Science and Technology, 9(24).
112. Zahra, S. A., & Nielsen, A. P. (2002). Sources of capabilities, integration and technology commercialization. Strategic Management Journal, 23(5), 377-398.
113. 3GPP. (2012). 3^rd Generation Partnership Project ; Technical Specification Group Services and System Aspects ; Service requirements for Machine-Type Communications (Release 11). Retrieved from qtc website: http://www.qtc.jp/3GPP/Specs/22368-b50.pdf
114. 3GPP. (2015). GSMA news article for 3GPP. Retrieved from 3GPP website: http://www.3gpp.org/news-events/partners-news/1758-gsma_iot

中文文獻
115. CSDN博客,2015,深度學習概述,Accessed:11/16/2016. [Online]. Available: http://blog.csdn.net/fengbingchun/article/details/50087005
116. CSDN博客,2016,Deep Learning(深度學習)學習筆記整理,Accessed:11/16/2016. [Online]. Available: http://blog.csdn.net/bluejoe2000/article/details/50885199
117. MBAlib智庫百科,2016,深度學習,Accessed:11/16/2016. [Online]. Available:
http://wiki.mbalib.com/zh-tw/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0
118. Synergytek,2016,專利家族 (Patent Family),Accessed:10/20/2016. [Online]. Available: http://synergytek.com.tw/blog/wiki/patent-family/?variant=zh-tw
119. 工業技術研究院,2016,工研院成立「物聯網智慧感測產業聯盟」搶國際大單,Accessed:05/21/2017. [Online]. Available: https://www.itri.org.tw/chi/Content/NewsLetter/Contents.aspx?SiteID=1&MmmID=620605426331276153&MSid=710202012272443352
120. 王進德,2007,類神經網路與模糊控制理論入門與應用,全華圖書,臺北。
121. 北美智權報,2016,物聯網專利所面臨的挑戰,Accessed:10/20/2016. [Online]. Available: http://www.naipo.com/Portals/1/web_tw/Knowledge_Center/Industry_Economy/IPNC_160402_0702.htm
122. 行政院,2017a,106年度預算編列,Accessed:03/10/2017. [Online]. Available: http://www.ey.gov.tw/policy2/cp.aspx?n=9EFE8F0973C48275
123. 行政院,2017b,智慧機械產業推動方案規劃,Accessed:03/10/2017. [Online]. Available: http://www.ey.gov.tw/News_Content.aspx?n=4E506D8D07B5A38D&s=D98F7BAFB503B307
124. 宏碁,2016,宏碁BYOC於2016 MWC多元展出 『跨領域物聯網雲端智慧生活』情境,Accessed:05/21/2017. [Online]. Available: https://www.acer.com/ac/zh/TW/press/2016/177586
125. 宏達電,2017,中華電信攜手HTC簽署2017年度合作備忘錄,Accessed:05/21/2017. [Online]. Available: http://www.htc.com/tw/about/newsroom/2017/2017-02-24/
126. 林師模、陳苑欽,2013,多變量分析:管理上的應用,雙葉書廊,臺北。
127. 林甫俊、吳振宇、郭獻中,2015,物聯網共通標準及其平台之發展與應用,電工通訊季刊,10-23。
128. 吳明隆,2011,SPSS統計應用學習實務 : 問卷分析與應用統計,易習圖書,台北。
129. 吳耀宏,2013,分析美國化工產業的專利範疇、RTA、平均專利年齡對市值之影響,國立臺北大學企業管理學系,碩士論文。
130. 卓裕盛,2012,以美國專利侵權訴訟判決為基礎建構倒傳遞類神經網路專利鑑價模式之研究,中華大學科技管理學系,碩士論文。
131. 科技產業資訊室,2006,商品化、產業化與專利佈局思考 (十三),Accessed:11/16/2016. [Online]. Available: http://iknow.stpi.narl.org.tw/post/Read.aspx?PostID=2981
132. 科技台灣,2012,正交分頻多工 (OFDM:Orthogonal FDM),Accessed:05/16/2017. [Online]. Available: http://www.hightech.tw/index.php/2012-06-06-14-12-38/27-wireless-communication/353-ofdm
133. 科技產業資訊室,2012,3G/4G通信標準專利訴訟InterDigital再告三星、諾基亞、華為和中興,Accessed:10/20/2016. [Online]. Available: http://cdnet.stpi.narl.org.tw/techroom/pclass/2013/pclass_13_A017.htm
134. 科技產業資訊室,2014,淺談美國聯邦法院對於標準必要專利之權利金判決,Accessed:10/20/2016. [Online]. Available: http://cdnet.stpi.narl.org.tw/techroom/pclass/2014/pclass_14_A085.htm
135. 科技政策研究與資訊中心,2015,如何運用資料探勘技術判斷高品質專利—以LED產業為例,Accessed:10/20/2016. [Online]. Available: http://portal.stpi.narl.org.tw/index/article/10183
136. 科技產業資訊室,2016,4G再進化 強攻物聯網商機,Accessed:05/16/2017. [Online]. Available: http://iknow.stpi.narl.org.tw/Post/Read.aspx?PostID=12304
137. 科技產業資訊室,2016,愛立信Avanci專利池授權平台 瞄準物聯網,Accessed:03/28/2017. [Online]. Available: http://iknow.stpi.narl.org.tw/Post/Read.aspx?PostID=12795
138. 張斐章、張麗秋、黃浩倫,2003,類神經網路-理論與實務,東華書局,臺北。
139. 張美虹,2014,主成分分析與叢集分析於DNA微陣列數據前處理的應用與實作,國立中央大學系統生物與生物資訊研究所,碩士論文。
140. 陳正昌、程炳林、陳新豐、劉子鍵,2005,多變量分析方法-統計軟體應用,第4版,五南,臺北。
141. 陳順宇,2005,多變量分析,第4版,華泰,臺北。
142. 黃煜尹,2004,改善筆記型電腦抗耐摔性之研究,國立政治大學統計學系,碩士論文。
143. 曾綜源、蔣依婷,2009,以自我組織映射圖及 K-means 之兩階段分群與倒傳遞類神經網路修正糖尿病資料庫偏離值,2009 數位科技與創新管理研討會,數位科技組研討會論文。
144. 葉怡成,2009,類神經網路模式應用與實作,第9版,儒林,臺北。
145. 經濟部智慧財產局,2013,通訊產業專利趨勢與訴訟分析研究計畫專利趨勢分析結案報告,Accessed:03/28/2017. [Online]. Available: http://otdil.cgu.edu.tw/ezfiles/15/1015/img/1352/871239510.pdf
146. 蔡林彤飛,2009,專利評價與分群策略,國立清華大學科技管理研究所,碩士論文。
147. 謝佳宏,2005,以本體論為基之類神經網路電子文件自動分類管理系統,國立清華大學工業工程與工程管理學系,碩士論文。
148. 羅玉燕,2016,基於生醫文本擷取功能性層級之生物學表徵語言敘述: 由主成分分析發想之 K 近鄰算法,國立中央大學資訊工程學系,博士論文。
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *