|
References
Bertsekas, D. P. (2016). Nonlinear Programming 3rd Edition. U.S.A.: Athena Scientific. Chang, J. F., Chu, S. C., Roddick, J. F., & Pan, J. S. (2005). Parallel Particle Swarm Optimization Algorithm with Communication Strategies. Journal of Information Science and Engineering, 21, pp. 809-818. Chen, X. (1995). A Parallel BFGS-SQP Method for Stochastic Linear. Computational Techniques and Applications (pp. 1-8). World Scientific. Chen, X., & Womersley, R. S. (1995). Random test problems and parallel methods for quadratic programs and quadratic stochastic programs. School of Mathematics, UNSW. Dixon, L. C., & Jha, M. (1993). Parallel algorithms for global optimization. Journal of Optimization Theory and Applications, 72(2), pp. 385-395. Fang, H. R., Leyffer, S., & Munson, T. S. (2009). A Pivoting Algorithm for Linear Programs with Complementarity Constraints. U.S.A: ARGONNE NATIONAL LABORATORY. Fletcher, R., & Leyffer, S. (2004). Solving mathematical programs with complementarity constraints as nonlinear programs. Optimization Methods and Software, 19(1), pp. 15-40. Fletcher, R., Leyffer, S., Ralph, D., & Scholtes, S. (2006). Local convergence of sqp methods for mathematical programs with equilibrium constraints. Society for Industrial and Applied Mathematics, 17(1), pp. 259-286. Giannessi, F., & Tomasin, E. (1973). Non convex quadratic programs, linear complementarity problems, and integer linear programs. Conti, R., Ruberti, A. (eds.) Fifth Conference on Optimization Techniques. 3, pp. 437-449. Berlin: Springer. Gill, P. E., Murray, W., & Saunders, M. A. (2005). SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization. Society for Industrial and Applied Mathematics, 47(1), pp. 99-131. Gill, P. E., Saunders, M. A., & Wong, E. (n.d.). On the performance of sqp methods for nonlinear optimization. Gockenbach, M. S. (n.d.). Introduction to sequential quadratic programming. Goldsmith, M. J. (1999, 3). Seqential quardratic programming methods based on indefinite hessian approximations. P.hD thesis. Standford University. Hu, J., Mitchell, J. E., & Pang, J. S. (2008). An LPCC approach to nonconvex quadratic programs. Mathematical Programming. Hu, J., Mitchell, J. E., Pang, J. S., & Yu, B. (2012). On linear programs with linear complementarity constraints. J Glob Optim, 53, pp. 29-51. Hu, J., Mitchell, J. E., Pang, J. S., Bennett, K. P., & Kunapili, G. (2008). On the global solution of linear programs with linear complementarity constraints. Society for Industrial and Applied Mathematics, 17(1), pp. 445-471. Huang, Y., & Zheng, Q. P. (2012). Benders Decomposition. Department of Industrial and Management Systems Engineering West Virginia University. Kang, S. J., Lee, S. Y., & Lee, K. M. (2015). Performance Comparison of OpenMP, MPI, and MapReduce in Practical Problems. Advances in Multimedia, pp. 1-9. Karau, H., Konwinski, A., Wendell, P., & Zaharia, M. (2015). Learning Spark. U.S.A: O'Reilly Media. Klabjan, D., Johnson, E. L., & Nemhauser, G. L. (2000). A Parallel Primal-Dual Simplex Algorithm. School of Industrial and Systems Engineering (GA 30332-0205). Georgia Institute of Technology. Kulkarni, A. A., & Shanbhag, U. V. (2012). Recourse-based stochastic nonlinear programming: properties and Benders-SQP algorithms. Comput Optim Appl, 51, pp. 77-123. Kunapuli, G., Bennett, K. P., Hu, J., & Pang, J. S. (2007). Bilevel Model Selection for Support Vector Machines. Lee, Y. C., Pang, J. S., & Mitchell, J. E. (2015). An algorithm for global solution to bi-parametric linear complementarity constrained linear programs. Journal of Global Optimization, 62, pp. 263-297. Migdalas, A., Toraldo, G., & Kumar, V. (2003). Nonlinear optimization and parallel computing. Parallel Computing., 29, pp. 375-391. Monteiroa, M. T., & Rodrigues, H. S. (2011). Combining the regularization strategy and the SQP to solve MPCC — A MATLAB implementation. Journal of Computational and Applied Mathematics, 235, pp. 5348-5356. Nocedal, J., & Wright, S. J. (2000). Numerical Optimization second edition. U.S.A: Springer. Pacheco, P. (2011). An Introduction to Parallel Programming. Morgan Kaufmann. Parsopoulos, K. E., & Vrahatis, M. N. (2002). Particle Swarm Optimization Method for Constrained Optimization Problems. Greece: Department of Mathematics, University of Patras Articial Intelligence Research Center. Phua, P., & Ming, D. (2003). Parallel Nonlinear Optimization Techniques for Training Neural Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS., 14(6), pp. 1460-1468. Schittkowski, K. (n.d.). A New Fortran Implementation of a Sequential Quadratic Programming Algorithm for Parallel Computing. Ta¸skın, Z. C. (n.d.). Benders Decomposition. Wiley Encyclopedia of Operations Research and Management Science., 1-16. Yu, B. (2011). A Branch and Cut Approach to Linear Programs with Linear Complementarity Constraints. Ph.D. thesis. Rensselaer Polytechnic Institute. Zaharia, M., Chowdhury, M., Franklin, M., Shenker, S., & Stoica, I. (2011). Spark: Cluster Computing with Working Sets. University of California, Berkeley.
|