帳號:guest(18.191.72.224)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳致廷
作者(外文):Chen, Chih-Ting
論文名稱(中文):RGB-D相機應用於動態抬舉作業評估之可行性
論文名稱(外文):The Feasibility of RGB-D Camera Applied to Dynamic Lifting Assessment
指導教授(中文):張堅琦
指導教授(外文):Chang, Chien-Chi
口試委員(中文):盧俊銘
邱銘傳
口試委員(外文):Lu, Jun-Ming
Chiu, Ming-Chuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:104034564
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:61
中文關鍵詞:RGB-D相機動態動作評估抬舉作業
外文關鍵詞:RGB-D cameradynamic motion assessmentlifting task
相關次數:
  • 推薦推薦:0
  • 點閱點閱:362
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
根據各領域的研究結果以及各國的統計資料,職業性肌肉骨骼傷害一直以來都密切影響著勞工健康,其中又以下背痛為主要探討的職業傷病之一。造成人員下背痛的原因繁多,在實際工作環境的作業中,則以人工物料搬運中的抬舉作業所佔的比例最高。近年來,RGB-D相機興起,其廣泛應用的潛能使它被認為有很高的可能性可作為動作追蹤裝置的一種。有鑑於此,本研究將以傳統動作追蹤系統之輸出數據為標準值,來探討當利用RGB-D相機追蹤動態抬舉作業時,針對人體主要關節、肢段之量測數據的準確度,並且同時瞭解RGB-D相機於不同拍攝角度時,是否會有準確度上的差異。
本研究探討兩種因子對於RGB-D追蹤準確度的影響,分別為RGB-D相機三種不同拍攝角度以及三種垂直抬舉範圍,每個因子皆有三種水準。拍攝角度方面,分別為受試者正前方(0度)、受試者右前方(45度)及受試者正右方(90度);抬舉範圍方面,分別為地面至膝高、地面至肩高及膝高至肩高。經過統計分析比較後,就整體準確度而言,軀幹部分在三種拍攝角度下表現較平穩;上、下肢在90度角拍攝下左側肢段準確度明顯低於0度及45度,且0度和45度之得準確度無顯著差異。若僅觀察0度及45度,則下肢部分整體準確度最高,上肢部分整體最低,軀幹介於兩者之間。雖然大多數關節點的準確度在相機於0度及45度拍攝時無顯著差異,但由於遮蔽情形的不同,相機於45度時,上肢在不同抬舉範圍的準確度表現一致,而在0度時則有顯著差異。
透過本研究的結果,得以客觀地瞭解RGB-D相機應用於動態動作評估的潛力,以期提供未來相關研究與實務上應用的參考依據。
According to various fields of research, work-related musculoskeletal disorders have a close association with labor health. In particular, low back pain has been the most studied in terms of occupational injuries. There are many reasons for occupational injuries; however, lifting, a manual material handling task, is the main task causing occupational injuries. Previously, capturing data on lifting has been a challenge. In recent years, however, technologies have given risen to now widely used RGB-D cameras. Importantly, this camera has significant potential for use as a kind of motion capture device.
In this research, we use output data from a motion capture system as a gold standard and focus on accurately calculating main body joint and limb movements by using a RGB-D camera to collect dynamic lifting data. At the same time, we investigate whether there is any accuracy difference when collecting data with a RGB-D camera at different angles relative to the subject. The two independent variables in this research were view angles of the RGB-D camera and lifting range. Each factor had three levels. There were three view-angle levels: camera placed in front of subject, camera placed at right side 45 degrees from the subject, and camera placed at the right side 90 degrees from the subject. There were three lifting-range levels: from floor to knee height, from floor to shoulder height, and from knee height to shoulder height. Statistical analysis showed that trunk accuracy was not significantly different between different view angles of the RGB-D camera. The accuracy of the left side upper and lower limb at 90 degrees was significantly lower than 0 and 45 degrees and there was no significant difference between 0 and 45 degrees. If we only focused on 0 and 45 degrees, we found that accuracy was highest for the lower limbs and lowest for the upper limbs. The accuracy of most joints was not significantly different between a camera at 0 degrees and 45 degrees, but for upper limb accuracy, there was a significant difference between different lifting ranges when the camera was at 0 degrees, whereas there was no significant difference when the camera was at 45 degrees.
The experimental results of this study provided an objective understanding of the potential for use of a RGB-D camera for dynamic motion assessment. These results facilitate the use of such technologies to investigate occupational injuries, specifically lifting. This works serves as a reference for future research and practical application.
目錄
摘要 I
Abstract II
目錄 IV
圖目錄 VI
表目錄 VII
第一章 緒論 1
1.1研究背景與動機 1
1.2研究目的 4
第二章 文獻探討 5
2.1 人工物料搬運 5
2.1.1 人工物料搬運所引起之傷病 5
2.2評估人工物料搬運之方法 7
2.3 RGB-D相機的應用 10
2.3.1 RGB-D相機之拍攝角度 10
第三章 研究方法 12
3.1 實驗儀器與設備 12
3.2 實驗設計與流程 14
3.2.1 研究參與者 14
3.2.2 光球點標記 14
3.2.3 實驗流程 17
3.2.4 誤差校正 22
3.3 數據分析 23
第四章 結果 27
4.1 描述性統計資料 27
4.2二因子重複量數變異數分析 33
4.3 主效果顯著之成對比較(Paired Comparison) 38
4.3.1 抬舉範圍顯著之成對比較 38
4.3.2 拍攝角度顯著之成對比較 39
4.4 交互作用效果顯著之單純效果(Simple effects)分析 41
第五章 討論 46
5.1 交互作用效果不顯著 46
5.2 交互作用效果顯著 49
5.3 綜合比較 51
第六章 結論 52
6.1 研究結論 52
6.2 限制 53
參考文獻 54
附錄一 61

仇敏 (2007)。人工物料搬運概論。大仁科技大學職業安全衛生系。
王茂駿、王明揚、林昱呈 (2001)。台灣地區人體計測資料庫手冊。中華民國人因工程學會。
王順正 (1998)。人工物料搬運之分析與評估。中原大學工業與系統工程學系。
吳水丕、李永輝、許勝雄 (1993)。人工物料抬舉研究方法之探討與比較。國立台 灣工業技術學院工業管理技術系。
莊舜弘 (2006)。日益頻繁的職業疾病:職業性肌肉骨骼傷害。勞工安全衛生簡訊第75期。
勞動部勞動及職業安全衛生研究所 (2014)。人因工程肌肉骨骼傷病預防研究重要績效輯。
鍾少軒 (2016)。RGB-D相機之人體靜態動作追蹤表現評估。國立清華大學工業工程與工程管理學系。
Ayoub, M. A. (1977). Optimum design of containers for manual material handling tasks. Applied ergonomics, 8(2), 67-72.
Ayoub, M. M., Bethea, N. J., Deivanayagam, S., Asfour, S. S., Bakken, G. M., Liles, D., ... & Sherif, M. (1978). Determination and modeling of lifting capacity. Final report, grant.
Ayoub, M. M., Mital, A., Asfour, S. S., & Bethea, N. J. (1980). Review, evaluation, and comparison of models for predicting lifting capacity. Human Factors, 22(3), 257-269.
Badger, D. W., & Habes, D. J. (1981). Work practices guide for manual lifting. US Government Printing Office.
Bandini, A., Orlandi, S., Giovannelli, F., Felici, A., Cincotta, M., Clemente, D., ... & Manfredi, C. (2015). Markerless Analysis of Articulatory Movements in Patients With Parkinson's Disease. Journal of Voice.
Bhattacharya, A., & McGlothlin, J. D. (Eds.). (2012). Occupational ergonomics: theory and applications. CRC Press.
Borg, G. (1990). Psychophysical scaling with applications in physical work and the perception of exertion. Scandinavian journal of work, environment & health, 55-58.
Buchbinder, R., Blyth, F. M., March, L. M., Brooks, P., Woolf, A. D., & Hoy, D. G. (2013). Placing the global burden of low back pain in context. Best Practice & Research Clinical Rheumatology, 27(5), 575-589.
Bureau of Labor Statistics. (2010). Nonfatal Occupational Injuries and Illnesses Requiring Days Away from Work, 2009. U.S. Department of Labor, Washington, D.C.
Carrivick, P. J. W., Lee, A. H., & Yau, K. K. W. (2001). Consultative team to assess manual handling and reduce the risk of occupational injury. Occupational and environmental medicine, 58(5), 339-344..
Chang, C. C., Hsiang, S., Dempsey, P. G., & McGorry, R. W. (2003). A computerized video coding system for biomechanical analysis of lifting tasks. International Journal of Industrial Ergonomics, 32(4), 239-250.
Chang, Y. J., Chen, S. F., & Huang, J. D. (2011). A Kinect-based system for physical rehabilitation: A pilot study for young adults with motor disabilities. Research in developmental disabilities, 32(6), 2566-2570.
Clark, R. A., Pua, Y. H., Bryant, A. L., & Hunt, M. A. (2013). Validity of the Microsoft Kinect for providing lateral trunk lean feedback during gait retraining. Gait & posture, 38(4), 1064-1066.
Corlett, E. N., & Bishop, R. P. (1976). A technique for assessing postural discomfort. Ergonomics, 19(2), 175-182.
Deros, B. M., Daruis, D. D. I., & Basir, I. M. (2015). A Study on Ergonomic Awareness among Workers Performing Manual Material Handling Activities. Procedia-Social and Behavioral Sciences, 195, 1666-1673.
Diego-Mas, J. A., & Alcaide-Marzal, J. (2014). Using Kinect™ sensor in observational methods for assessing postures at work. Applied ergonomics, 45(4), 976-985.
Dolatabadi, E., Taati, B., & Mihailidis, A. (2016). Concurrent validity of the Microsoft Kinect for Windows v2 for measuring spatiotemporal gait parameters. Medical Engineering & Physics, 38(9), 952-958.
Don B.. Chaffin, Andersson, G. B., & Bernard J.. Martin. (2006). Occupational biomechanics. Wiley-Interscience Publication.
Drury, C. G. (1977). International symposium on safety in manual materials handling: SUNY, Buffalo, New York, USA July 1976. Applied Ergonomics, 8(1), 51-52.
Filko, D., Cupec, R., & Nyarko, E. K. (2016). Detection, Reconstruction and Segmentation of Chronic Wounds Using Kinect v2 Sensor. Procedia Computer Science, 90, 151-156.
Galna, B., Barry, G., Jackson, D., Mhiripiri, D., Olivier, P., & Rochester, L. (2014). Accuracy of the Microsoft Kinect sensor for measuring movement in people with Parkinson's disease. Gait & posture, 39(4), 1062-1068.
Garg, A. (1976). A metabolic rate prediction model for manual materials handling jobs.
Garg, A., & Moore, J. S. (1991). Epidemiology of low-back pain in industry. Occupational medicine (Philadelphia, Pa.), 7(4), 593-608.
Gonzalez-Jorge, H., Riveiro, B., Vazquez-Fernandez, E., Martínez-Sánchez, J., & Arias, P. (2013). Metrological evaluation of microsoft kinect and asus xtion sensors. Measurement, 46(6), 1800-1806.
Grant, K. A., Galinsky, T. L., & Johnson, P. W. (1993, October). Use of the actigraph for objective quantification of hand/wrist activity in repetitive work. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 37, No. 10, pp. 720-724). SAGE Publications.
Hayat, M., Bennamoun, M., & El-Sallam, A. A. (2016). An RGB–D based image set classification for robust face recognition from Kinect data. Neurocomputing, 171, 889-900.
Health and Safety Executive. (2010a). Self-Reported Work Related Illness and Workplace Injuries in 2008/09.
Hignett, S., & McAtamney, L. (2000). Rapid entire body assessment (REBA). Applied ergonomics, 31(2), 201-205.
Howard, J., & Welsh, L. (2007). Ergonomic Guidelines for Manual Material Handling. Cal/OSHA Consultation Service Diakses dari http://www. cdc. gov/niosh/docs/2007-131.
Hoy, D., Brooks, P., Blyth, F., & Buchbinder, R. (2010). The epidemiology of low back pain. Best practice & research Clinical rheumatology, 24(6), 769-781.
Karhu, O., Härkönen, R., Sorvali, P., & Vepsäläinen, P. (1981). Observing working postures in industry: Examples of OWAS application. Applied Ergonomics, 12(1), 13-17.
Karhu, O., Kansi, P., & Kuorinka, I. (1977). Correcting working postures in industry: a practical method for analysis. Applied ergonomics, 8(4), 199-201.
Keyserling, W. M., Brouwer, M., & Silverstein, B. A. (1992). A checklist for evaluating ergonomic risk factors resulting from awkward postures of the legs, trunk and neck. International Journal of Industrial Ergonomics, 9(4), 283-301.
Kroemer, K. H. E. (1983). Field testing of workers involved in material handling. In Back injuries. Bureau of Mines Technology Transfer Symposia.
Kuiper, J. I., Burdorf, A., Verbeek, J. H., Frings-Dresen, M. H., van der Beek, A. J., & Viikari-Juntura, E. R. (1999). Epidemiologic evidence on manual materials handling as a risk factor for back disorders: a systematic review. International Journal of Industrial Ergonomics, 24(4), 389-404.
Kuorinka, I., Jonsson, B., Kilbom, A., Vinterberg, H., Biering-Sørensen, F., Andersson, G., & Jørgensen, K. (1987). Standardised Nordic questionnaires for the analysis of musculoskeletal symptoms. Applied ergonomics, 18(3), 233-237.
Marras, W. S., & SCHOENMARXLIN, R. W. (1993). Wrist motions in industry. Ergonomics, 36(4), 341-351.
Marras, W. S., & Sommerich, C. M. (1991). A three-dimensional motion model of loads on the lumbar spine: I. Model structure. Human factors, 33(2), 123-137.
Marras, W. S., Fathallah, F. A., Miller, R. J., Davis, S. W., & Mirka, G. A. (1992). Accuracy of a three-dimensional lumbar motion monitor for recording dynamic trunk motion characteristics. International Journal of Industrial Ergonomics, 9(1), 75-87.
Martin, C. C., Burkert, D. C., Choi, K. R., Wieczorek, N. B., McGregor, P. M., Herrmann, R. A., & Beling, P. A. (2012, April). A real-time ergonomic monitoring system using the Microsoft Kinect. In Systems and Information Design Symposium (SIEDS), 2012 IEEE (pp. 50-55). IEEE.
McAtamney, L., & Corlett, E. N. (1993). RULA: a survey method for the investigation of work-related upper limb disorders. Applied ergonomics, 24(2), 91-99.
Natural User Interface for Kinect for Windows [WWW Document], 2013. Microsoft Developer Network. URL: https://msdn.microsoft.com/en-us/library/hh855352.aspx
Parida, R., & Ray, P. K. (2015). Biomechanical modelling of Manual Material Handling tasks: A comprehensive review. Procedia Manufacturing, 3, 4598-4605.
Plantard, P., Shum, H. P., Le Pierres, A. S., & Multon, F. (2016). Validation of an ergonomic assessment method using Kinect data in real workplace conditions. Applied Ergonomics.
Procházka, A., Vyšata, O., Vališ, M., Ťupa, O., Schätz, M., & Mařík, V. (2015). Bayesian classification and analysis of gait disorders using image and depth sensors of Microsoft Kinect. Digital Signal Processing, 47, 169-177.
Scherer, M., Unterbrunner, A., Riess, B., & Kafka, P. (2016). Development of a System for Supervised Training at Home with Kinect V2. Procedia Engineering, 147, 466-471.
Seo, J. O., Han, S. U., Lee, S. H., & Armstrong, T. J. (2014). Feasibility of Onsite Biomechanical Analysis during Ladder Climbing. In Construction Research Congress 2014: Construction in a Global Network (pp. 739-748).
Seo, N. J., Fathi, M. F., Hur, P., & Crocher, V. (2016). Modifying Kinect placement to improve upper limb joint angle measurement accuracy. Journal of Hand Therapy, 29(4), 465-473.
Shojaei, I., Vazirian, M., Croft, E., Nussbaum, M. A., & Bazrgari, B. (2016). Age related differences in mechanical demands imposed on the lower back by manual material handling tasks. Journal of biomechanics, 49(6), 896-903.
Skilling, E.J., Munro, C. (2016). Human Factors in the Chemical and Process Industries. CH.15 – Human factors in material handling, 257-270.
Summa, S., Basteris, A., Betti, E., & Sanguineti, V. (2013). A feasibility study on using kinect for the rehabilitation in persons with Parkinson’s disease. Gait & Posture, 37(supplement 1), S15.
Waters, T. R., Putz-Anderson, V., Garg, A., & Fine, L. J. (1993). Revised NIOSH equation for the design and evaluation of manual lifting tasks. Ergonomics, 36(7), 749-776.
Widanarko, B., Legg, S., Stevenson, M., Devereux, J., Eng, A., Cheng, S., ... & Pearce, N. (2011). Prevalence of musculoskeletal symptoms in relation to gender, age, and occupational/industrial group. International Journal of Industrial Ergonomics, 41(5), 561-572.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *