帳號:guest(3.145.95.107)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉宜安
作者(外文):Liou, Yi-An
論文名稱(中文):智慧型眼鏡的使用及休息時間之配置評估
論文名稱(外文):The evaluation of work-rest schedule of using smart glasses
指導教授(中文):王茂駿
盧俊銘
指導教授(外文):Wang, Mao-Jiun
Lu, Jun-Ming
口試委員(中文):吳欣潔
唐硯漁
口試委員(外文):Wu, Hsin-Chieh
Kang, Yen-Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:104034559
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:75
中文關鍵詞:智慧眼鏡視覺疲勞疲勞恢復動暈症腦波
外文關鍵詞:smart glassesmotion sicknesseye fatiguefatigue recoveryEEG
相關次數:
  • 推薦推薦:0
  • 點閱點閱:160
  • 評分評分:*****
  • 下載下載:11
  • 收藏收藏:0
隨著科技的蓬勃發展,智慧型眼鏡的功能越來越多樣化,結合擴增實境或虛擬實境後,在各種專業用途上有很大的助益,特別在娛樂產業、產品展示、教育學習等領域皆可使用智慧型眼鏡呈現豐富的影像。但這些便利及娛樂也伴隨著副作用的產生,過去研究指出長時間使用智慧型眼鏡的確會帶來負面的生理反應、視覺疲勞以及暈眩感等不適,若在這些反應還未完全消除時即從事精密工作(如駕駛交通工具、開刀、操作機台或使用刀具等),發生危險的機率將會大幅上升。在過往針對與視覺相關的工作與休息時間之配置的研究中,僅有視覺工作站(Visual Display Terminal, VDT)之使用與休息時間的建議,因此本研究將探討使用智慧型眼鏡觀看不同時間長度之影片後所需要的恢復時間。
本研究招募15位男性及15位女性研究參與者,年齡介於22歲到30歲之間。使用EPSON BT-200智慧型眼鏡觀看兩種長度(60分鐘及120分鐘)之劇情片,並蒐集閃光融合閾值(Critical Fusion Frequency, CFF)、近點調節值(Near Point Accommodation, NPA)、腦電波(Electroencephalography, EEG;僅限於男性)等客觀數據,同時使用模擬器動暈症問卷(Simulator Sickness Questionnaire, SSQ)及快速動暈症量表(Fast Motion Sickness Scale, FMS)調查研究參與者的主觀感受。在研究參與者觀看影片前先量測一次以上數據,做為恢復的目標參考值,待結束觀看影片後,將請研究參與者卸除智慧型眼鏡並放鬆休息,接著每隔五分鐘量測一次以上的數據、重覆6次,總共休息30分鐘(包含量測時間則為48分鐘),以分析何時能恢復到觀看影片前的水準。
實驗結果發現,男性與女性在觀看影片後所產生的CFF、NPA、SSQ值並無顯著差異。但觀看較長的影片(120分鐘)後,CFF值下降較多,NPA與SSQ值上升較多,亦即更為疲勞、暈眩。分析男性的腦波發現,θ/α值下降與疲勞的產生相關。且觀看120分鐘的影片後,在休息的30分鐘內皆未發現θ/α值有恢復的現象產生,換言之,觀看120分鐘的影片後,需要至少休息時間超過30分鐘,始能恢復視覺疲勞。整體而言,觀看時間較長的影片對人體所產生的負面影響較大,且所需恢復時間較長。考量休息對於疲勞恢復的影響,觀看一個小時的影片後,在休息約20分鐘即可使CFF、NPA及SSQ值幾乎完全恢復至觀看影片前之水準,而觀看兩個小時的影片則需要30分鐘、甚至更長的恢復時間。因此,本研究建議使用者在使用智慧眼鏡觀看一個小時的影片後至少需休息20分鐘,觀看兩個小時的影片後則至少需休息30分鐘,以恢復其生理不適感、確保安全。



關鍵字:智慧型眼鏡、視覺疲勞、疲勞恢復、腦波、動暈症
With the advancement of wearable technology, smart glasses have become more and more popular in recent years. Smart glasses have brought about many benefits in a variety of application. However, previous studies have reported that user have experienced adverse symptoms due to the use of smart glasses. Unfortunately, little research has been performed in work-rest schedules of smart glass. Thus, this study considered the different duration of visual work while using smart glasses to determine the better work-rest schedules in different length of visual work.
Thirty health participants (15 male and 15 female) were recruited to participate in this study. The participants were requested to wear EPSON BT-200 smart glasses to watch a one hour video and a two hours video. Each of 5 minutes of visual experiment procedure, the FMS (Fast Motion Sickness Scale) was taken. After the visual experiment procedure was completed, a 30 minutes rest period was given. The SSQ (Simulator Sickness Questionnaire), CFF (Critical Fusion Frequency), NPA (Near Point Accommodation) and EEG (Electroencephalography) were collected. Each of 5 minutes of rest period, the SSQ, CFF, NPA and EEG were taken to evaluate the recovery time.
The results indicated that the gender effect not significant on SSQ, CFF and NPA. The duration of visual work had significant effect on CFF, NPA and SSQ. A longer duration of visual work lead to higher level of visual fatigue and simulation sickness symptoms.
The EEG results showed that the decrease in the value of θ/α is related to fatigue. Within the 30 minutes rest, it was found that the θ/α value of watching the longer video(120 minutes) did not recover at all. In shorter words, a rest of 30 minutes or more is required. In general, it brings more impact to users and needs a longer rest time to recover after watching a longer video. After watching video for one hour, CFF, NPA and SSQ almost subside to pre-exposure levels following 20 minutes of rest. After watching video for two hour, CFF, NPA and SSQ failed to subside to pre-exposure levels following at least 30 minutes of rest.
In summary, in order to eliminate physical discomfort associated with the use of smart glasses, it is suggested that users should take a rest for at least 20 minutes after watching videos for one hour. In case of watching videos for two hour, the rest time should be at least 30 minutes.

Keywords: smart glasses, eye fatigue, fatigue recovery, EEG, motion sickness
目錄
圖目錄 X
表目錄 XII
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究範圍與限制 3
1.4 研究架構 4
第二章 文獻探討 5
2.1 頭戴式顯示裝置 5
2.2 視覺疲勞 6
2.2.1 閃光融合閾值(Critical Fusion Frequency, CFF) 7
2.2.2 近點調節值(Near Point Accommodation, NPA) 7
2.3 模擬器動暈症(Simulator Sickness) 8
2.3.1 模擬器動暈症問卷(Simulator Sickness Questionnaire, SSQ) 8
2.3.2 快速動暈症量表(Fast Motion sickness Scale, FMS) 10
2.4 腦波 10
2.5 小結 12
第三章 研究方法 13
3.1 前測 13
3.1.1 前測研究參與者 13
3.1.2 實驗設備 14
3.1.3 實驗環境 16
3.1.4 自變項 16
3.1.5 依變項 16
3.1.6 前測流程 18
3.1.7 前測結果 20
3.2 正式實驗 22
3.2.1 研究參與者 22
3.2.2 實驗設備 22
3.2.3 實驗環境 23
3.2.4 自變項 24
3.2.5 依變項 24
3.2.6 實驗流程 27
3.3 數據分析 30
第四章 研究結果 31
4.1 客觀視覺疲勞數據 36
4.1.1 閃光融合閾值 36
4.1.2 近點調節值 38
4.2 主觀問卷數據 40
4.2.1 SSQ-視覺疲勞程度 40
4.2.2 SSQ-動暈症總程度 42
4.2.3 SSQ-噁心感受 44
4.2.4 SSQ-定向障礙程度 46
4.2.5 FMS 48
4.3 腦波 50
4.4 總結 53
第五章 討論 55
5.1 性別 55
5.1.1 視覺疲勞 55
5.1.2 動暈症 55
5.2 影片長度 57
5.2.1 視覺疲勞 57
5.2.2 動暈症 58
5.3 恢復時間 61
5.4 腦波 63
5.5 實驗設備限制與環境限制 64
5.5.1 硬體設備 64
5.5.2 環境 64
第六章 結論與建議 65
6.1 結論 65
6.2 建議 66
參考文獻 68
附錄一、模擬器動暈症問卷 74
附錄二、研究倫理審查委員會核可證明 75

中文文獻:
1. MIC研究報告網站:http://mic.iii.org.tw
2. EPSON官方網站:https://www.epson.com.tw/
3. SONY官方網站:https://www.sony.com.tw/
4. TAKEI官方網站:http://www.takei-si.co.jp
5. Stereo Optical官方網站:http://www.stereooptical.com/
6. WOC官方網站:http://www.woc.co.jp
7. Mind Media官方網站:http://www.mindmedia.info/CMS2014/
8. Trans Cranial Tecnologies官方網站:https://www.trans-cranial.com/
9. 王德生(2015)。全球智能穿戴设备发展现状与趋势。競爭情報Competitive Intelligence,Vol.11 No.5,52-59。
10. 余鹉亭(1999)。如何不近视。健康博览,(1),27-27。
11. 沈佳薇(2015)。當導覽遇上穿戴式裝置。CompoTech Asia(電子與電腦),201506,22-24。
12. 沈乾龍(2008)。生理監視用紡織品。科學發展,426,28-31。
13. 卓委樞(2015)。VDT 作業眼睛疲勞預防之人因工程介入評估研究。中山醫學大學職業安全衛生學系碩士班學位論文,1-58。
14. 林志炫(2014)。虛擬實境呈現方式對人員績效與視覺疲勞之影響。中原大學工業與系統工程研究所學位論文,1-112。
15. 林建松(2013)。濾藍光鏡片之使用對長時間電腦工作者減輕視覺疲勞的效果。中山醫學大學生物醫學科學學系碩士班學位論文,1-56。
16. 林研詩(2015)。虛擬實境產業起飛-帶動創新科技與軟硬整合商機浮現。產業科技部技術處,產業技術評析。
17. 邱創乾、藍振晏、石天威、謝靜玟(2012)。未來服飾-智慧衣。科學發展,470,10-14。
18. 紀佳芬、林房儹(1997)。電腦作業視覺疲勞的量測方法。
19. 赵佶(2014)。2014年穿戴电子技术设计最新发展趋势。半导体信息,02,39-41。
20. 徐彬偉(2015)。EEG量測視覺疲勞及心智負荷之可用性評估。清華大學工業工程與工程管理學系學位論文。
21. 陳建宇、黃永廣、廖允在、何秉諺(2007)。古典與電子音樂對腦波影響之研究。In Proceeding of International Medical Informatics Symposium in Taiwan,Vol. 2007,373-386。
22. 陳麒元(2011)。利用生理訊號評估心智負荷之研究。清華大學工業工程與工程管理學系學位論文。
23. 彭家偉(2011)。面板技術與刺激型態對視覺疲勞出現時間之影響。朝陽科技大學工業工程與管理系研究所學位論文。
24. 黃台生、林康平、周文智(2006)。使用頭配式顯示器之生理負荷與主觀性評估。人因工程學刊,8(1),49-59。
25. 詹皓羽、林耿弘、張淵竣、林康平(2004)。頭配式顯示器人體安全評估。 Journal of Medical and Biological Engineering,24(S),43-4。.
26. 鄭育菁(2006)。數位投影機使用者在不同環境下的視覺疲勞與辨識績效評估。朝陽科技大學。
27. 簡鈞豪(2012)。四種眼睛疲勞恢復方法的評估。朝陽科技大學工業工程與管理系碩士在職專班學位論文,1-63。

英文文獻:
1. Andreassi, J.L. (2007) Measurement of the EEG. In J. L. Andreassi (Ed.), Psychophysiology: Human behavior and physiological response. New Jersey: Hillsdale. 59-69.
2. Balci, R. and Aghazadeh, F. (2003). The effect of work-rest schedules and type of task on the discomfort and performance of VDT users. Ergonomics, 46(5), 455-465.
3. Biocca, F. (1992). Will simulation sickness slow down the diffusion of virtual environment technology? Presence: Teleoperators and Virtual Environments, 1, 334–343.
4. Bridger RS (2003) Introduction to ergonomics, 2nd edn. Taylor and Francis, London
5. Brookhuis, K.A. and Waard, D.,(1993)The use of psychophysiology to assess driver status. Ergonomics 39(9), 1099-1110.
6. Bullimore, M.A., Fulton, E.J. and Howarth, P.A.(1990). Assessment of visual performance , In:J.R.Wilson and E.N.Corelett(Eds),Evaluation of Human Work: A Practical Ergonomics Methodology. London:Taylor and Francis.
7. Cao, T., Wan, F., Wong, C.M., da Cruz, J.N. and Hu, Y. (2014). Objective evaluation of fatigue by EEG spectral analysis in steady-state visual evoked potential-based brain-computer interfaces. Biomedical engineering online, 13(1), 28.
8. Cheng, S.Y. and Hsu, H.T. (2011) Mental fatigue measurement using EEG. In Nota G. (Eds.), Risk Management Trends. InTech. doi: 10.5772/16376
9. Cheng, S., Lee, H., Shu, C. and Hsu, H. (2007). Electroencephalographic study of mental fatigue in visual display terminal tasks. Journal of Medical and Biological Engineering, 27(3), 124.
10. De Crescenzio, F., Fantini, M., Persiani, F., Di Stefano, L., Azzari, P. and Salti, S. (2011). Augmented reality for aircraft maintenance training and operations support. IEEE Computer Graphics and Applications, 31(1), 96-101.
11. Didier, J.Y., Roussel, D., Mallem, M., Otmane, S., Naudet, S., Pham, Q.C. and Hocquard, A. (2005, October). AMRA: augmented reality assistance for train maintenance tasks. In Workshop Industrial Augmented Reality, 4th ACM/IEEE International Symposium on Mixed and Augmented Reality (ISMAR 2005) (Elect-Proc).
12. Dobie, T., May, J., McBride, D and Dobie, T., Jr. (2001). The effects of age and sex on susceptibility to motion sickness. Aviation, Space and Environmental Medicine, 72, 13–20.
13. Grandjean, E. and Kroemer, K.H.E. (1988). Fitting the task to the human: A textbook of occupational ergonomics. Taylor and Francis, London.
14. Gunnarsson, E. and Söderberg, I. (1983). Eye strain resulting from VDT work at the Swedish telecommunications administration. Applied Ergonomics, 14(1), 61-69.
15. Hayashi, M., Chikazawa, Y. and Hori, T. (2004). Short nap versus short rest: recuperative effects during VDT work. Ergonomics, 47(14), 1549-1560.
16. Henning, R.A., Jacques, P., Kissel, G.V., Sullivan, A.B. and Alteras-Webb, S.M. (1997). Frequent short rest breaks from computer work: effects on productivity and well-being at two field sites. Ergonomics, 40(1), 78-91.
17. Horie, Y. (1991). A study on the evaluation of sample workload by a thermal video system. Towards Human Work: Solutions to Problems in Occupational Health and Safety, 251-252.
18. Ishikawa, S. (1990). Examination of the near triad in VDU operators. Ergonomics, 33(6), 787-798.
19. Iwasaki, T. and Akiya, S. (1991) The significance of changes in CFF values during performance on a VDT - based visual task. In M. K. and E. D. (Ed.), Towards human work: solutions to problems in occupational health and safety. London, Taylor and Francis, 352-357.
20. Iwasaki, T., Kurimoto, S. and Noro, K. (1989). The change in colour critical flicker fusion (CFF) values and accommodation times during experimental repetitive tasks with CRT display screens. Ergonomics, 32(3), 293-305.
21. Kennedy, R.S. and Frank, L.H. (1985). A review of motion sickness with special reference to simulator sickness (Report No. NAVTRAEQUIPCEN 81-C-0105-16; NTIS No. AD A 155- 975). Orlando, FL: Naval Training Equipment Center.
22. Kennedy, R.S., Lanham, D.S., Drexler, J.M. and Lilienthal, M.G. (1995). A method for certification that aftereffects of virtual reality exposures have dissipated: Preliminary findings. In A. C. Bittner and P. C. Champney (Eds.) Advances in industrial ergonomics safety VII. London: Taylor and Francis
23. Keshavarz, B. and Hecht, H. (2011). Validating an efficient method to quantify motion sickness. Human Factors: The Journal of the Human Factors and Ergonomics Society, 53(4), 415-426.
24. Keshavarz, B. and Hecht, H. (2014). Pleasant music as a countermeasure against visually induced motion sickness. Applied ergonomics, 45(3), 521-527.
25. Kingdon, K., Stanney, K.M. and Kennedy, R.S. (2001). Extreme responses to virtual environment exposure. In Proceedings of the Human Factors and Ergonomics Society 45th Annual Meeting, 1906–1910.
26. Kolasinski, E.M. (1995). Simulator sickness in virtual environments (ARI Tech. Report 1027). Alexandria, VA: U.S. Army Research Institute for the Behavioral and Social Sciences.
27. Kolasinski, E.M. and Gilson, R.D. (1998). Simulator sickness and related findings in a virtual environment. Proceedings of the Human Factors and Ergonomics Society 420d AnnualMeeting, 1511-1515.
28. Lee, J.H. and Song, J.K. (2012). Individual variation in 3D visual fatigue caused by stereoscopic images. IEEE Transactions on Consumer Electronics, 58(2), 500-504
29. Lin, Y.H., Chen, C.Y., Lu, S.Y. and Lin, Y.C. (2008). Visual fatigue during VDT work: Effects of time-based and environment-based conditions. Displays, 29(5), 487-492.
30. Llorach, G., Evans, A. and Blat, J. (2014). Simulator sickness and presence using HMDs: comparing use of a game controller and a position estimation system. In Proceedings of the 20th ACM Symposium on Virtual Reality Software and Technology, 137-140.
31. Matousek, M. and Petersén, I. (1983). A method for assessing alertness fluctuations from EEG spectra. Electroencephalography and clinical neurophysiology, 55(1), 108-113.
32. Megaw, T., Wilson, J.R. and Corlett, E.N. (1990). The definition and measurement of visual fatigue. Evaluation of Human Work: A Practical Ergonomics Methodology. Taylor and Francis, London.
33. Merhi, O., Faugloire, E., Flanagan, M. and Stoffregen, T.A. (2007). Motion sickness, console video games and head-mounted displays. Human Factors: The Journal of the Human Factors and Ergonomics Society, 49(5), 920-934.
34. Misiak, H. (1947). Age and sex differences in critical flicker frequency. Journal of Experimental Psychology, 37(4), 318.
35. Moss, J.D. and Muth, E.R. (2011). Characteristics of head-mounted displays and their effects on simulator sickness. Human Factors: The Journal of the Human Factors and Ergonomics Society, 53(3), 308-319.
36. Mourant, R.R. and Thattacherry, T.R. (2000). Simulator sickness in a virtual environments driving simulator. In Proceedings of the human factors and ergonomics society annual meeting, 44(5), 534-537).
37. Muensterer, O.J., Lacher, M., Zoeller, C., Bronstein, M. and Kübler, J. (2014). Google Glass in pediatric surgery: an exploratory study. International journal of surgery, 12(4), 281-289.
38. Murata, K., Araki, S., Yokoyama, K., Yamashita, K., Okumatsu, T. and Sakou, S. (1996). Accumulation of VDT work-related visual fatigue assessed by visual evoked potential, near point distance and critical flicker fusion. Industrial health, 34(2), 61-69.
39. Patel, S., Park, H., Bonato, P., Chan, L. and Rodgers, M. (2012). A review of wearable sensors and systems with application in rehabilitation. Journal of neuroengineering and rehabilitation, 9(1), 1.
40. Pomer-Escher, A., Tello, R., Castillo, J. and Bastos-Filho, T. (2014). Analysis of mental fatigue in motor imagery and emotional stimulation based on EEG. In XXIV Congresso Brasileiro de Engenharia Biomedica-CBEB.
41. Putman, P., van Peer, J.,Maimari, I. and van der Werff, S. (2010). EEG theta/beta ratio in relation to fear-modulated response-inhibition, attentional control and affective traits. Biological Psychology, 83, 73-78.
42. Scerbo, M.W., Freeman, F.G. and Mikulka, P.J. (2000). A biocybernetic system for adaptive automation. Engineering psychophysiology: Issues and applications, 241-254.
43. Sharples, S., Cobb, S., Moody, A. and Wilson, J.R. (2008). Virtual reality induced symptoms and effects (VRISE): Comparison of head mounted display (HMD), desktop and projection display systems. Displays, 29(2), 58-69.
44. Smith, M.E., Gevins, A., Brown, H., Karnik, A. and Du, R. (2001). Monitoring task loading with multivariate EEG measures during complex forms of human-computer interaction. Human Factors, 43(3), 366-380.
45. Stanney, K.M., Hale, K.S., Nahmens, I. and Kennedy, R.S. (2003). What to expect from immersive virtual environment exposure: Influences of gender, body mass index and past experience. Human Factors, 45(3), 504-520.
46. Ullsperger, P., Neumann, U., Gille, H.G. and Pietschann, M. (1986). P300 component of the ERP as an index of processing difficulty. Human Memory and Cognitive Capabilities, Amsterdam: Elsevier Science Publications.
47. Webster, J.G. (1978). Medical Instrumentation-Application and Design. Journal of Clinical Engineering, 3(3), 306.
48. Yuan, M.L., Ong, S.K. and Nee, A.Y.C. (2008). Augmented reality for assembly guidance using a virtual interactive tool. International Journal of Production Research, 46(7), 1745-1767.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *