帳號:guest(3.17.110.242)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):沈哲瑋
作者(外文):Shen, Che-Wei
論文名稱(中文):透過製程規劃減少五軸數控工具機之運動能量消耗
論文名稱(外文):Minimize Motion Energy Consumption of 5-Axis CNC Machine Tool via Process Planning
指導教授(中文):瞿志行
指導教授(外文):Chu, Chih-Hsing
口試委員(中文):高永洲
謝秉澂
口試委員(外文):Kao, Yung-Chou
Hsieh, Ping-Cheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:104034550
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:77
中文關鍵詞:五軸加工切削能耗機構運動最佳化數控加工
外文關鍵詞:5-Axis Machine ToolFlank MachiningTool Path PlanningEnergy Consumption
相關次數:
  • 推薦推薦:0
  • 點閱點閱:531
  • 評分評分:*****
  • 下載下載:20
  • 收藏收藏:0
五軸加工適合於複雜工件的製造,由於擁有兩個旋轉自由度,相較於傳統的三軸加工,不僅造型能力優越,其生產效率亦顯著提高。五軸加工可應用於汽車、造船、航太、能源與模具業中,大型複雜零件的加工成形,如渦輪葉片、輪胎模具與機身結構框架等,整體切削過程工時較長,且消耗相當可觀的能量。以數控工具機進行切削所耗費的能量,由閒置能量、切削能量與機台運動能量三大部分所構成。以往曾嘗試經由製程規劃,適當調整工件的起始擺放方位、進給率、切削深度或是軸轉速度等,降低切削過程的耗能。儘管機構運動消耗的能量比例不低,但僅有少數研究探討此一議題,透過調整工件起始擺放方位,在容許的誤差限制下降低工具機運動能耗。本研究嘗試以刀具路徑形式與加工件擺放位置,減少此部份的能耗。首先在CAD/CAM中刀具路徑生成階段,在滿足整體切削誤差與加工範圍限制下,選擇能耗較低的路徑形式,計算對應的刀具運動路徑。而在機台運動模擬階段,使用反應曲面法,搜尋工件在轉盤上最佳的擺置方式,以最小化機台運動能耗。此外可針對特定工具機組態,計算加工所需能耗,以模擬軟體展示機構運動過程,並於結束加工時,顯示各軸向上的能耗以及整體能耗。本研究透過製程規劃的最佳化,以低成本的方式降低切削加工中,工具機運動的能量消耗,成為實現永續發展的自動化技術。
Five-axis machining has been commonly used to produce complex components in automobile, aerospace, mold, and energy industries. The operation power consumed by a 5-axis machine tool for manufacturing large parts can be fairly substantial. The total energy amount accumulating over time becomes excessive especially for those parts of an extended product lifecycle. Any attempts to reduce the energy consumption in this case, even though the absolute saving seems marginal, may contribute greatly to the environment in a long run. For this purpose, this paper presents a preliminary study on reducing the kinematic energy consumed by a 5-axis CNC machine in a flank milling operation. We first demonstrate the differences in the energy spent by three tool path planning methods: (1) proceeding with a tilt angle, (2) interpolating between two cutter locations, and (3) setting each cutter location a corresponding tilt angle. Optimization schemes are then applied to adjust the tool paths in the last two methods for minimizing the kinematic energy, subject to the kinematic constraints on each motion axis. A simulation program implementing inverse kinematics (IKT) is developed to help visualize how different tool path planning influences the energy consumption of a 5-axis CNC machine while preforming the same machining task. The simulation results have validated the feasibility of reducing energy consumption in 5-axis flank machining via automatic tool path planning.
摘要 2
Abstract 3
誌謝詞 4
目錄 5
圖目錄 8
表目錄 9
第一章 緒論 10
1.1 研究背景 10
1.2 研究方法與目的 11
1.3 研究架構 14
第二章 文獻探討 15
第三章 五軸加工與能量消耗 20
3.1 五軸加工的輸入產生與處理 20
3.2 五軸加工產生的能耗 21
3.3 座標系定義與逆運動轉換 23
3.4 機構運動能耗之探討 24
3.4.1 機構運動能耗之計算 25
3.4.2 計算之假設與限制 26
3.5小結 27
第四章 刀具路徑對能耗影響之探討 29
4.1 計算之規劃流程 29
4.2 刀具路徑之生成與運動策略之設計 29
4.2.1 刀具位置之表示式 30
4.2.2 刀具運動策略的設計 30
4.3 切削誤差定義與估算 32
4.4 應用之演算法介紹 33
4.5 最佳化結果與分析 37
4.5.1 設計之工件曲面介紹 37
4.5.2 刀具運動策略一:所有刀具位置之前傾角均為固定角度 39
4.5.3 刀具運動策略二:設定頭、尾刀具位置之前傾角 42
4.5.4 刀具運動策略三:個別調整所有刀具位置之前傾角 51
4.6 小結 54
第五章、工件擺置對能耗影響之探討 56
5.1 計算之規劃流程 56
5.2 工件擺置之參數設計 56
5.3 應用之演算法介紹 57
5.4 最佳化工件擺置之計算結果與分析 60
5.5 模擬軟體之使用目的與介紹 68
5.6 小結 71
第六章、結論與未來展望 72
參考資料 75
附錄 77
[1] Vickers, G. W., & Quan, K. W. (1989). Ball-mills versus end-mills for curved surface machining. Journal of Engineering for Industry, 111(1), 22-26.
[2] Tönshoff, H. K., Gey, C., & Rackow, N. (2001). Flank milling optimization-the flamingo project. Air & Space Europe, 3(3), 60-63.
[3] 蔡易君,五軸側銑最佳化路徑規劃之改善,清華大學工業工程與工程管理學系,碩士論文,2011
[4] Xu, K., & Tang, K. (2017). Optimal Workpiece Setup for Time-Efficient and Energy-Saving Five-Axis Machining of Freeform Surfaces. Journal of Manufacturing Science and Engineering, 139(5), 051003.
[5] Zhou, L., Li, J., Li, F., Meng, Q., Li, J., & Xu, X. (2016). Energy consumption model and energy efficiency of machine tools: a comprehensive literature review. Journal of Cleaner Production, 112, 3721-3734.
[6] Kordonowy, D. N. (2002). A power assessment of machining tools (Doctoral dissertation, Massachusetts Institute of Technology).
[7] Kara, S., & Li, W. (2011). Unit process energy consumption models for material removal processes. CIRP Annals-Manufacturing Technology, 60(1), 37-40.
[8] Aramcharoen, A., & Mativenga, P. T. (2014). Critical factors in energy demand modelling for CNC milling and impact of toolpath strategy. Journal of Cleaner Production, 78, 63-74.
[9] Diaz, N., Helu, M., Jarvis, A., Tönissen, S., Dornfeld, D., & Schlosser, R. (2009). Strategies for minimum energy operation for precision machining. Laboratory for Manufacturing and Sustainability.
[10] Calvanese, M. L., Albertelli, P., Matta, A., & Taisch, M. (2013). Analysis of energy consumption in CNC machining centers and determination of optimal cutting conditions. In Re-engineering Manufacturing for Sustainability (pp. 227-232). Springer Singapore.
[11] Kant, G., & Sangwan, K. S. (2015). Predictive Modelling for Energy Consumption in Machining Using Artificial Neural Network. Procedia CIRP, 37, 205-210.
[12] Balogun, V. A., Edem, I. F., Adekunle, A. A., & Mativenga, P. T. (2016). Specific energy based evaluation of machining efficiency. Journal of Cleaner Production, 116, 187-197.
[13] Pavanaskar, S., Pande, S., Kwon, Y., Hu, Z., Sheffer, A., & McMains, S. (2015). Energy-efficient vector field based toolpaths for CNC pocketmachining. Journal of Manufacturing Processes, 20, 314-320.
[14] Mouzon, G., Yildirim, M. B., & Twomey, J. (2007). Operational methods for minimization of energy consumption of manufacturing equipment. International Journal of Production Research, 45(18-19), 4247-4271.
[15] Newman, S. T., Nassehi, A., Imani-Asrai, R., & Dhokia, V. (2012). Energy efficient process planning for CNC machining. CIRP Journal of Manufacturing Science and Technology, 5(2), 127-136.
[16] Liu, X. W. (1995). Five-axis NC cylindrical milling of sculptured surfaces. Computer-Aided Design, 27(12), 887-894.
[17] Chu, C. H., Lee, C. T., Tien, K. W., & Ting, C. J. (2011). Efficient tool path planning for 5-axis flank milling of ruled surfaces using ant colony system algorithms. International Journal of Production Research, 49(6), 1557-1574.
[18] Hsieh, H. T., Tsai, Y. C., & Chu, C. H. (2013). Multi-pass progressive tool path planning in five-axis flank milling by particle swarm optimisation. International Journal of Computer Integrated Manufacturing, 26(10), 977-987.
[19] 郭奇龍,基於統計技術之五軸側銑路徑規劃,清華大學工業工程與工程管理學系,博士論文,2016。
[20] Pessoles, X., Landon, Y., Segonds, S., & Rubio, W. (2013). Optimisation of workpiece setup for continuous five-axis milling: application to a five-axis BC type machining centre. The International Journal of Advanced Manufacturing Technology, 1-13.
[21] Shaw, D., & Ou, G. Y. (2008). Reducing X, Y and Z axes movement of a 5-axis AC type milling machine by changing the location of the work-piece. Computer-Aided Design, 40(10), 1033-1039.
[22] Hu, P., & Tang, K. (2011). Improving the dynamics of five-axis machining through optimization of workpiece setup and tool orientations. Computer-Aided Design, 43(12), 1693-1706.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *