帳號:guest(3.143.214.89)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡奇軒
作者(外文):Tsai, Chi-Hsuan
論文名稱(中文):應用多代理人系統於設計個人化產品服務系統
論文名稱(外文):Design a Personalized Product Service System Utilizing Multi-Agent System
指導教授(中文):邱銘傳
指導教授(外文):Chiu, Ming-Chuan
口試委員(中文):張瑞芬
郭財吉
口試委員(外文):Trappey, Amy
Kuo, Tsai-Chi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:104034545
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:62
中文關鍵詞:產品服務系統多代理人系統服務工程個人化普及運算
外文關鍵詞:product service systemmulti-agent systempersonalizationpervasive computing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:368
  • 評分評分:*****
  • 下載下載:8
  • 收藏收藏:0
身在一個不停變動的世界,作為價值鏈上的一員,不論是企業、投資者、消費者無不希望可以消弭不確定因素所衍生的種種問題。隨著經濟發展環境污染日漸嚴重,人類開始省思如何能兼顧經濟活動及環境保護,永續發展逐漸成為科技發展的重要議題。被視為永續發展的其中一種方式,產品服務系統結合了有形的產品、無形的服務及後端的支援系統,目的於降低不確定因素衍生的風險並且滿足多變的顧客需求。雖然已有許多針對產品服務系統發展之研究,但仍欠缺可因應變動環境而提供不同內容的設計方法。為使人與電腦更自然互動學者們提出普及運算,其顯著目標是使得電腦裝置可以感知周圍的環境變化,從而根據環境的變化做出基於用戶需要的行為。有鑑於普及運算之特性與設計產品服務系統之不確定性,本研究致力於發展設計個人化產品服務系統之模型以因應多變的需求,多代理人系統用於實踐普及運算概念,藉代理人間溝通協調設計出兼顧個人化差異及永續發展之產品服務系統,在此方法中使用者可以提出期望的特徵值例如預算、頻率、狀況…等,該系統會透過協同過濾演算法尋求適切的產品或服務以滿足使用者偏好,各個可能的產品服務系統會依據契合程度依序排列並提供給使用者。藉由本研究,企業可以檢視現存的產品服務系統之表現如何,除此之外更可以協助設計更符合顧客需求之個人化內容,最終提升企業之競爭力及品牌價值。

關鍵字: 產品服務系統、多代理人系統、服務工程、個人化、普及計算
In the dynamic changing world, problems of uncertainty are doubtlessly crucial issues for firms, investors, customers, and all other members in the value chain. To achieve sustainability, reduce the risk of uncertainty, and fulfill a variety of customer needs, the concept of Product Service System has been proposed as a solution. Although there are several previous studies working on PSS development, there is no dynamic methodology to quickly adjust for external changes and customer response. According to the above gap, this paper presents a Multi-Agent-based Personalized Product Service System (MAPPSS) development model. As the definition of pervasive computing, the complex problem can be solved by distributed intelligent. Multi-agent system is a well-known methodology applied in several pervasive environments. An agent-based model is built to develop a personalized PSS prototype. In this model, users are able to decide the expected service characteristics, and service composition would be conducted by searching related product and service in the database. With the application of the proposed method, competence of enterprises can be enhanced due to user-oriented features. The PSS can be improved immediately by constantly monitoring and through the iteration of the proposed method.

Keywords: Product service system, Multi-agent system, Personalization, Pervasive Computing
Abstract II
Table of Contents III
List of Figures IV
List of Tables V
1 Introduction 6
2 Literature Review 9
2.1 Product Service System 9
2.2 Pervasive Computing & Multi-Agent System 12
2.3 Personalization & Recommendation System 15
2.4 Summary 19
3 Methodology 21
3.1 Collaborative Filtering Algorithm 22
3.1.1 Item Similarity Computation 23
3.1.2 Prediction Computation 25
3.2 Multi-Agent Based Personalized Product Service System Development Model 25
3.2.1 Sensor Agent Module 28
3.2.2 Rating Agent 28
3.2.3 Similarity Agent 29
3.2.4 User Package Agent 30
3.2.5 System Agent 30
3.2.6 Product Selection Agent & Service Selection Agent 31
3.2.7 Recommendation Agent 32
3.3 System Evaluation 32
4 Case Study 35
4.1 Background 35
4.2 The application of MAPPSS 35
4.3 Performance Evaluation 45
4.4 Discussion 53
5 Conclusion 55
6 Reference 57

[1] Isaksson, O., Larsson, T. C., & Rönnbäck, A. Ö. (2009). Development of product-service systems: challenges and opportunities for the manufacturing firm. Journal of Engineering Design, 20(4), 329-348.
[2] Goedkoop, M., Van Halen, C. J., Te Riele, H., & Rommens, P. J. (1999). Product service systems, ecological and economic basics. Report for Dutch Ministries of environment (VROM) and economic affairs (EZ), (1st), Pre Consultants Amersfoort.
[3] Baines, T. S., Lightfoot, H. W., Evans, S., Neely, A., Greenough, R., Peppard, J., & Alcock, J. R. (2007). State-of-the-art in product-service systems. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 221(10), 1543-1552.
[4] Wu, Y., Lee, J. H., Kim, Y. S., Lee, S. W., Kim, S. J., & Yuan, X. (2017). A similarity measurement framework of product-service system design cases based on context-based activity model. Computers & Industrial Engineering, 104, 68-79.
[5] Sheng, Z., Liu, C., Song, J., & Xie, H. (2017). Module division and configuration modeling of CNC product–service system. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 231(3), 494-506.
[6] Li, H., Ji, Y., Chen, L., & Jiao, R. J. (2015). Bi-Level Coordinated Configuration Optimization for Product-Service System Modular Design. IEEE Transactions on Systems, Man, and Cybernetics: Systems.
[7] Mont, O. K. (2002). Clarifying the concept of product–service system. Journal of cleaner production, 10(3), 237-245.
[8] Manzini, E., & Vezzoli, C. (2003). A strategic design approach to develop sustainable product service systems: examples taken from the ‘environmentally friendly innovation’Italian prize. Journal of Cleaner Production, 11(8), 851-857.
[9] Tukker, A. (2004). Eight types of product–service system: eight ways to sustainability? Experiences from SusProNet. Business strategy and the environment, 13(4), 246-260.
[10] Reim, W., Parida, V., & Örtqvist, D. (2015). Product–Service Systems (PSS.) business models and tactics–a systematic literature review. Journal of Cleaner Production, 97, 61-75.
[11] Berkovich, M., Leimeister, J. M., Hoffmann, A., & Krcmar, H. (2014). A requirements data model for product service systems. Requirements Engineering, 19(2), 161-186.
[12] Durugbo, C., Tiwari, A., & Alcock, J. R. (2011). A review of information flow diagrammatic models for product–service systems. The International Journal of Advanced Manufacturing Technology, 52(9-12), 1193-1208.
[13] Chiu, M-C., Kuo, M-Y., and Kuo, T-C. (2015) “A new methodology to develop business model of product service system,” International Journal of Industrial Engineering: Theory, Applications and Practice 22(3), 369-381.
[14] Maussang, N., Zwolinski, P., & Brissaud, D. (2009). Product-service system design methodology: from the PSS architecture design to the products specifications. Journal of Engineering Design, 20(4), 349-366.
[15] Gelbmann, U., & Hammerl, B. (2015). Integrative re-use systems as innovative business models for devising sustainable product–service-systems. Journal of Cleaner Production, 97, 50-60.
[16] Sakao, T., & Shimomura, Y. (2007). Service Engineering: a novel engineering discipline for producers to increase value combining service and product. Journal of Cleaner Production, 15(6), 590-604.
[17] Shimomura, Y., Hara, T., & Arai, T. (2008). A service evaluation method using mathematical methodologies. CIRP Annals-Manufacturing Technology, 57(1), 437-440.
[18] Erkoyuncu, J. A., Roy, R., Shehab, E., & Cheruvu, K. (2011). Understanding service uncertainties in industrial product–service system cost estimation. The International Journal of Advanced Manufacturing Technology, 52(9-12), 1223-1238.
[19] Erkoyuncu, J. A., Roy, R., Shehab, E., Cheruvu, K., & Gath, A. (2012). Impact of uncertainty on industrial product-service system delivery. In Proceedings of the 2nd CIRP IPS2 Conference 2010; 14-15 April; Linköping; Sweden (No. 077, pp. 481-487). Linköping University Electronic Press.
[20] Kumar, A. A., Trinh, G. C., & Sakao, T. (2013). How is uncertainty perceived and managed in design by pss providers?-relation to pss types provided. The Philosopher's Stone for Sustainability, 91-96.
[21] Giusto, D., Iera, A., Morabito, G., & Atzori, L. (Eds.). (2010). The internet of things: 20th Tyrrhenian workshop on digital communications. Springer Science & Business Media.
[22] Weiser, M. (1991). The computer for the 21st century. Scientific american,265(3), 94-104.
[23] Satyanarayanan, M. (2001). Pervasive computing: Vision and challenges.IEEE Personal communications, 8(4), 10-17.
[24] Conti, M., Das, S. K., Bisdikian, C., Kumar, M., Ni, L. M., Passarella, A., ... & Zambonelli, F. (2012). Looking ahead in pervasive computing: Challenges and opportunities in the era of cyber–physical convergence. Pervasive and Mobile Computing, 8(1), 2-21.
[25] Zambonelli, F., Omicini, A., Anzengruber, B., Castelli, G., De Angelis, F. L., Serugendo, G. D. M., ... & Mariani, S. (2015). Developing pervasive multi-agent systems with nature-inspired coordination. Pervasive and Mobile Computing, 17, 236-252.
[26] Durfee, E. H., & Lesser, V. R. (1989). Negotiating task decomposition and allocation using partial global planning. Distributed artificial intelligence, 2(1), 229-244.
[27] Yu, R., Iung, B., & Panetto, H. (2003). A multi-agents based E-maintenance system with case-based reasoning decision support. Engineering applications of artificial intelligence, 16(4), 321-333.
[28] Mishra, N., Kumar, V., & Chan, F. T. (2012). A multi-agent architecture for reverse logistics in a green supply chain. International Journal of Production Research, 50(9), 2396-2406.
[29] Huang, C. J., Trappey, A. J., & Yao, Y. H. (2006). Developing an agent-based workflow management system for collaborative product design. Industrial Management & Data Systems, 106(5), 680-699.
[30] Shen, W., Hao, Q., Yoon, H. J., & Norrie, D. H. (2006). Applications of agent-based systems in intelligent manufacturing: An updated review. Advanced engineering INFORMATICS, 20(4), 415-431.
[31] Karavas, C. S., Kyriakarakos, G., Arvanitis, K. G., & Papadakis, G. (2015). A multi-agent decentralized energy management system based on distributed intelligence for the design and control of autonomous polygeneration microgrids. Energy Conversion and Management, 103, 166-179.
[32] Kim, E., Kim, W., & Lee, Y. (2000). Purchase propensity prediction of EC customer by combining multiple classifier based on GA. In Proceedings of international conference on electronic commerce (pp. 274-280).
[33] Feng, H., Tian, J., Wang, H. J., & Li, M. (2015). Personalized recommendations based on time-weighted overlapping community detection. Information & Management, 52(7), 789-800.
[34] Dahmus, J. B., Gonzalez-Zugasti, J. P., & Otto, K. N. (2001). Modular product architecture. Design studies, 22(5), 409-424.
[35] Chiu, M. C., & Ko, L. W. (2016). Develop a personalized intelligent music selection system based on heart rate variability and machine learning. Multimedia Tools and Applications, 1-33.
[36] Garrido, A., Morales, L., & Serina, I. (2016). On the use of case-based planning for e-learning personalization. Expert Systems with Applications, 60, 1-15.
[37] Hsiao, W. B., Chiu, M. C., Chu, C. Y., & Chen, W. F. (2015). A systematic service design methodology to achieve mass personalisation. International Journal of Agile Systems and Management, 8(3-4), 243-263.
[38] Zhou, F., Ji, Y., & Jiao, R. J. (2013). Affective and cognitive design for mass personalization: status and prospect. Journal of Intelligent Manufacturing,24(5), 1047-1069.
[39] Xu, Y., & Li, Y. (2005). A framework for e-commerce oriented recommendation systems. In Proceedings of the 2005 International Conference on Active Media Technology, 2005.(AMT 2005). (pp. 309-314). IEEE.
[40] Cacheda, F., Carneiro, V., Fernández, D., & Formoso, V. (2011). Comparison of collaborative filtering algorithms: Limitations of current techniques and proposals for scalable, high-performance recommender systems. ACM Transactions on the Web (TWEB), 5(1), 2.
[41] Meier, H., & Völker, O. (2008). Industrial product-service-systems-typology of service supply chain for IPS2 providing. In Manufacturing Systems and Technologies for the New Frontier (pp. 485-488). Springer London.
[42] Roy, R., & Erkoyuncu, J. A. (2011). Service cost estimation challenges in industrial product-service systems. In Functional thinking for value creation (pp. 1-10). Springer Berlin Heidelberg.
[43] Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th international conference on World Wide Web (pp. 285-295). ACM.
[44] Yoon, B., Kim, S., & Rhee, J. (2012). An evaluation method for designing a new product-service system. Expert Systems with Applications, 39(3), 3100-3108.
[45] Sakao, T., & Lindahl, M. (2012). A value based evaluation method for Product/Service System using design information. CIRP Annals-Manufacturing Technology, 61(1), 51-54.
[46] Mourtzis, D., Fotia, S., & Doukas, M. (2015). Performance indicators for the evaluation of product-service systems design: A review. In IFIP International Conference on Advances in Production Management Systems (pp. 592-601). Springer International Publishing.
[47] Kim, K. J., Lim, C. H., Heo, J. Y., Lee, D. H., Hong, Y. S., & Park, K. (2016). An evaluation scheme for product–service system models: development of evaluation criteria and case studies. Service Business, 10(3), 507-530.
[48] Mont O., Dalhammar C. and Jacobsson N. (2006). A new business model for baby prams based on leasing and product remanufacturing. Journal of Cleaner Production 14(17): 1509-1518.
[49] Kantamneni, A., Brown, L. E., Parker, G., & Weaver, W. W. (2015). Survey of multi-agent systems for microgrid control. Engineering Applications of Artificial Intelligence, 45, 192-203.
[50] Song, W., Ming, X., Han, Y., Xu, Z., & Wu, Z. (2015). An integrative framework for innovation management of product–service system. International Journal of Production Research, 53(8), 2252-2268.
[51] Tran, T., & Park, J. Y. (2016). Development of a Novel Co-Creative Framework for Redesigning Product Service Systems. Sustainability, 8(5), 434.
[52] Salazar, C., Lelah, A., & Brissaud, D. (2015). Eco-designing Product Service Systems by degrading functions while maintaining user satisfaction. Journal of Cleaner Production, 87, 452-462.
[53] Zhu, H., Gao, J., & Cai, Q. (2015). A product-service system using requirement analysis and knowledge management technologies. Kybernetes, 44(5), 823-84
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *