帳號:guest(18.217.96.145)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):郭亦心
作者(外文):Kuo, Yi-Hsin
論文名稱(中文):TFT-LCD模組製程之多產品批次模型裝配線平衡問題研究
論文名稱(外文):A Study of Multi-Model Assembly Line Balancing Problem for TFT-LCD Module Process
指導教授(中文):陳建良
指導教授(外文):Chen, Jiang-Liang
口試委員(中文):陳盈彥
陳子立
口試委員(外文):Chen, Yin-Yann
Chen, Tzu-Li
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:104034540
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:114
中文關鍵詞:多產品批次模型裝配線平衡薄膜電晶體液晶顯示器模組製程兩階段適應性基因演算法反應曲面法
外文關鍵詞:thin film transistor-liquid crystal displaymulti-model assembly line balancingmodule processtwo-phase adaptive genetic algorithmresponse surface method
相關次數:
  • 推薦推薦:0
  • 點閱點閱:345
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在薄膜電晶體液晶顯示器 (Thin Film Transistor-Liquid Crystal Display, TFT-LCD) 產業中,模組(Module)製程相對於陣列(Array)、彩色濾光片(Color Filter)及組立(Cell)製程而言,許多程序不易自動化,是勞力密集的製程。另外,由於模組製程會同時在生產線上生產組裝不同產品族之產品,因而被視為多產品批次模型的組裝線。因此,若在模組製程上做整合性的安排,以及推動線平衡,可以減少人力資源的使用及增加生產線效率。本研究考慮TFT-LCD模組廠生產的實際特性,包括多技能員工與技能熟練度等,求解多產品批次模型裝配線平衡問題 (Multi-Model Assembly Line Balancing, MuMALB),提出了新的數學模型來安排工作站、任務、人力、及設備。此外,將以模組廠生產數據進行演算法參數設定,搭配實驗設計分析及反應曲面法驗證兩階段適應性基因演算法之績效。本研究結合理論研究與實務應用,發展兩階段適應性基因演算法,希望有效提升模組製程效率並降低成本,進而提升我國TFT-LCD產業的國際競爭力。
In the Thin Film Transistor-Liquid Crystal Display (TFT-LCD) industry, the module process is labor intensive, as it is more difficult to apply automation to this process, compared with Array, Color filter, and Cell processes. In addition, module process is considered a multi-model assembly line, which means several models from a basic product family are manufactured simultaneously. Therefore, a module process with integrated arrangement and line-balancing can reduce labor requirement and increase production efficiency. This research considered several practical characteristics of the TFT-LCD module process, including multi-skilled operators and operator efficiency, to solve a multi-model assembly line balancing (MuMALB) problem. A new mathematical model was proposed to arrange labors, tasks, workstations, and machines. Furthermore, data from the TFT-LCD module factories were used to evaluate the performance of heuristic two-phase adaptive genetic algorithm (AGA) based on experimental design and response surface method. This study integrated theoretical research and practical application to develop a heuristic two-phase AGA for assembly line balancing problem for the TFT-LCD module process. Hence, the efficiency could be improved, and the cost could be reduced, which would ultimately improve the global competitiveness of TFT-LCD manufacturers of our country.
摘要.......................................................I
Abstract..................................................II
致謝......................................................III
Contents..................................................IV
List of Tables............................................VI
List of Figures...........................................VIII
Chapter 1: Introduction...................................10
1.1 Background............................................10
1.2 Objectives............................................13
1.3 Research Method.......................................13
1.4 Organization of Thesis................................15
Chapter 2: Literature Review..............................16
2.1 Assembly Line Balancing Problem (ALBP)................16
2.2 Assembly Line Worker Assignment and Balancing Problem (ALWABP)..................................................21
2.3 Genetic Algorithm (GA)................................23
Chapter 3: Problem Definition.............................26
3.1 Problem Statement.....................................26
3.2 Assumptions and Notations.............................31
3.3 Problem Formulation...................................33
3.4 Model Validation......................................36
Chapter 4:Methodology.....................................38
4.1 Multi-Model Assembly Line Balancing (MuMALB) Solution Module ..........................................................38
4.2 Two-Phase Adaptive Genetic Algorithm (AGA) Approach...39
4.2.1 Phase 1: Priority Rule-Based Method (PRBM)..........39
4.2.2 Phase 2: Heuristic AGA..............................43
4.3 Response Surface Methodology (RSM)....................51
4.4 Response Surface Design...............................55
Chapter 5: Computational Study............................57
5.1 Illustrated Example...................................57
5.1.1 Information of Simple Case..........................57
5.1.2 Information of Complex Case.........................63
5.2 Parameter Setting and Result of RSM...................65
5.3 Comparison between Methodologies......................71
5.4 Application of Complex Case...........................77
5.5 Parameter Setting of System...........................78
Chapter 6: Conclusion.....................................82
Reference.................................................84
Appendix..................................................88
Ağpak, K., & Gökçen, H. (2005). Assembly line balancing: Two-resource constrained cases. International Journal of Production Economics, 96(1), 129-140.
Akpınar, S., Mirac Bayhan, G., & Baykasoglu, A. (2013). Hybridizing ant colony optimization via genetic algorithm for mixed-model assembly line balancing problem with sequence dependent setup times between tasks. Applied Soft Computing, 13(1), 574-589.
Boysen, N., Fliedner, M., & Scholl, A. (2007). A classification of assembly line balancing problems. European Journal of Operational Research, 183(2), 674-693.
Box, G., & Wilson, K. (1951). On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society. Series B (Methodological), 13(1), 1-45.
Bryton, B. (1954). Balancing of a continuous production line (Doctoral dissertation, Northwestern University).
Capacho, L., Pastor, R., Dolgui, A., & Guschinskaya, O. (2009). An evaluation of constructive heuristic methods for solving the alternative subgraphs assembly line balancing problem. Journal of Heuristics, 15(2), 109-132.
Chen, R. S., Lu, K. Y., & Yu, S. C. (2002). A hybrid genetic algorithm approach on multi-objective of assembly planning problem. Engineering Applications of Artificial Intelligence, 15(5), 447-457.
Deng, Y., Liu, Y., & Zhou, D. (2015). An improved genetic algorithm with initial population strategy for symmetric TSP. Mathematical Problems in Engineering 2015.
Du, Y., Fang, J., & Miao, C. (2014). Frequency-domain system identification of an unmanned helicopter based on an adaptive genetic algorithm. IEEE Transactions on Industrial Electronics, 61(2), 870-881.
Fattahi, P., Roshani, A., & Roshani, A. (2010). A mathematical model and ant colony algorithm for multi-manned assembly line balancing problem. The International Journal of Advanced Manufacturing Technology, 53(1-4), 363-378.
Goldberg, D. E. (1989). Genetic algorithms and Walsh functions: Part I, a gentle introduction. Complex systems, 3(2), 129-152.
Gen, M., Lin, L., & Zhang, W. (2015). Multiobjective hybrid genetic algorithms for manufacturing scheduling: Part I models and algorithms. In Proceedings of the Ninth International Conference on Management Science and Engineering Management, 3-25. Springer, Berlin, Heidelberg.
Hackman S. T., Magazine M. J., Wee T. S. (1989). Fast, effective algorithms for simple assembly line balancing problems. Operations Research, 37(6), 916–924
Karp, R. M. (1972). Reducibility among combinatorial problems. Complexity of Computer Computations, 85-103.
Khouja, M., Michalewicz, Z., & Wilmot, M. (1998). The use of genetic algorithms to solve the economic lot size scheduling problem. European Journal of Operational Research, 110(3), 509-524.
Kim, Y. K., Kim, Y. J., & Kim, Y. (1996). Genetic algorithms for assembly line balancing with various objectives. Computers & Industrial Engineering, 30(3), 397-409.
Klein, R., & Scholl, A. (1996). Maximizing the production rate in simple assembly line balancing—a branch and bound procedure. European Journal of Operational Research, 91(2), 367-385.
Kucukkoc, I., & Zhang, D. Z. (2015). Type-E parallel two-sided assembly line balancing problem: Mathematical model and ant colony optimisation based approach with optimised parameters. Computers & Industrial Engineering, 84, 56-69.
Lin Y. X. (2016). A study of multi-objective assembly line balancing problem in footwear manufacturing (Master’s thesis, National Tsing Hua Unuversity, Hsinchu).
Matondang, M. Z., & Jambak, M. I. (2010). Soft computing in optimizing assembly lines balancing 1.
Otto, A., & Otto, C. (2014). How to design effective priority rules: Example of simple assembly line balancing. Computers & Industrial Engineering, 69, 43-52.
Özcan, U., & Toklu, B. (2008). A tabu search algorithm for two-sided assembly line balancing. The International Journal of Advanced Manufacturing Technology, 43(7-8), 822-829.
Ponnambalam, S. G., Aravindan, P., & Naidu, G. M. (2000). A multi-objective genetic algorithm for solving assembly line balancing problem. The International Journal of Advanced Manufacturing Technology, 16(5), 341-352.
Quyen, N. T. P., Chen, J. C., & Yang, C. L. (2016). Hybrid genetic algorithm to solve resource constrained assembly line balancing problem in footwear manufacturing. Soft Computing, 1-17.
Ramezanian, R., & Ezzatpanah, A. (2015). Modeling and solving multi-objective mixed-model assembly line balancing and worker assignment problem. Computers & Industrial Engineering, 87, 74-80.
Roshani, A., Salehi, M., & Esfandyari, A. (2013). A simulated annealing algorithm for multi-manned assembly line balancing problem. Journal of Manufacturing Systems, 32(1), 238-247.
Sastry, K., Goldberg, D. E., & Kendall, G. (2014). Genetic algorithms. Search Methodologies, Springer US, 93-117
Shih H. Y. (2017). A study of type-iv assembly line balancing problem in footwear manufacturing (Master’s thesis, National Tsing Hua University, Hsinchu).
Tasan, S. O., & Tunali, S. (2007). A review of the current applications of genetic algorithms in assembly line balancing. Journal of Intelligent Manufacturing, 19(1), 49-69.
Tsujimura, Y., Gen, M., & Kubota, E. (1995). Solving fuzzy assembly-line balancing problem with genetic algorithms. Computers & Industrial Engineering, 29(1), 543-547.
Van Z., J. I., & De Kok, T. G. (1997). The mixed and multi-model line balancing problem: A comparison. European Journal of Operational Research, 100(3), 399-412.
Wong, W. K., Mok, P. Y., & Leung, S. Y. S. (2005). Developing a genetic optimisation approach to balance an apparel assembly line. The International Journal of Advanced Manufacturing Technology, 28(3-4), 387-394
Yun, Y., & Gen, M. (2003). Performance analysis of adaptive genetic algorithms with fuzzy logic and heuristics. Fuzzy Optimization and Decision Making, 2(2), 161-175.
Zacharia, P. T., & Nearchou, A. C. (2016). A population-based algorithm for the bi-objective assembly line worker assignment and balancing problem. Engineering Applications of Artificial Intelligence, 49, 1-9.
Zhang, W., Xu, W., & Gen, M. (2013). Multi-objective evolutionary algorithm with strong convergence of multi-area for assembly line balancing problem with worker capability. Procedia Computer Science, 20, 83-89.
劉美君‧2015顯示器產業年鑑‧台灣:經濟部技術處,2015
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *