帳號:guest(18.222.118.105)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳湘雲
作者(外文):Chen, Hsiang-Yun
論文名稱(中文):基於連續型編碼之五軸側銑路徑最佳化
論文名稱(外文):Optimization of Tool Path Planning Based on Continuous Encoding Schemes in 5-Axis Flank Milling
指導教授(中文):瞿志行
指導教授(外文):Chu, Chih-Hsing
口試委員(中文):高永洲
謝秉澂
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:104034528
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:73
中文關鍵詞:五軸加工刀具路徑規劃側銑加工類電磁演算法連續型編碼
外文關鍵詞:5-Axis MachiningFlank MillingTool Path PlanningCurve Continuity
相關次數:
  • 推薦推薦:0
  • 點閱點閱:81
  • 評分評分:*****
  • 下載下載:22
  • 收藏收藏:0
五軸加工比傳統的三軸加工增加了兩個旋轉的自由度,被廣泛應用於複雜曲面的成型,包括汽車、航太、模具與能源等產業。以往研究將五軸側銑之路徑產生轉換成數學規劃問題,並使用全域最佳化演算法求解,以降低曲面的加工誤差。但因轉換後的問題具有高維度、高度非線性的特性,導致求解過程的計算效率與收斂解的品質均不佳。此外由於獨立調整個別刀具位置,無法保持最後路徑的連續性,造成加工表面精度不佳。本研究基於對刀具路徑重新編碼,針對直紋曲面的五軸側銑精加工,發展連續型調整刀具路徑的計算方法。研究目的包括持續改善最佳化演算法的計算效率,以及提升最佳化路徑品質,並透過連續型編碼的限制,改善刀具路徑產生的加工表面精度,另外也嘗試將最佳化過程從工件座標系轉移至機器座標系,探討在不同座標系進行最佳化的差異。分別完成「連續型五軸側銑路徑編碼」、「動態增加變數之機制」、「改良篩選變化解類電磁演算法」、「探討不同座標系最佳化差異」以及「模擬驗證加工曲面之表面粗糙度」等具體工作內容。最後根據代表性曲面產生對應之刀具路徑,進行切削模擬測試,模擬結果驗證了提出方法的效能。本研究兼具創新與應用價值,發揮基於全域最佳化之五軸側銑路徑規劃的優勢,不僅有效控制加工曲面的誤差,提升計算效率,亦提供新穎的連續型路徑規劃模式,提升複雜幾何的製造技術水準。
Five-axis CNC flank machining has been commonly used in various industries for shaping complex geometries. This advanced machining operation offers highly flexible tool motion with two rotational degrees of freedom. It produces a greater material removal rate than 5-axis point machining because of a larger contact area of the cutter. Previous studies have developed tool path planning methods for reducing machining errors in 5-axis flank finishing cut of ruled surface. Most methods independently adjust individual cutter locations of a tool path by an optimization process. This usually results in a high-dimensional solution space difficult to search for optimal solutions. In addition, the continuity of the resultant tool path is not guaranteed in those methods. An excessive change between consecutive cutter locations may deteriorate the machined surface quality. To overcome these problems, we propose a novel optimization scheme that optimally adjusts a tool path subject to higher-order continuity constraints. The scheme encodes both the translational and rotational tool motions in compact curve representations. As a result, the number of optimization variables, determined by the curve control points, is largely reduced. A curve subdivision mechanism is applied to adaptively increase the control points until the machining accuracy satisfies a given tolerance. Simulation results have validated the effectiveness of the proposed scheme on reducing geometrical errors on the machined surface. Not only is the efficiency in optimization enhanced, but preserving the tool path continuity also improves the finished surface quality. This work provides a computational approach to increasing the practical value of 5-axis CNC flank machining by tool path optimization.
摘要 2
Abstract 3
誌謝 4
目錄 5
第一章 緒論與文獻探討 11
1.1 研究背景 11
1.2 文獻探討 13
1.2.1 刀具路徑規劃 14
1.2.2 刀具路徑編碼 14
1.2.3 過往研究限制 16
1.3 研究目的 17
第二章 刀具路徑編碼 19
2.1 連續型刀具路徑編碼 19
2.1.1 貝茲曲線 19
2.1.2 刀具中心點軌跡編碼 20
2.1.3 刀具軸向編碼 21
2.2 增加變數之機制 26
2.2.1 增加變數之方法 26
2.2.2 增加變數之時機 28
第三章 誤差計算與演算法 31
3.1 切削誤差估計 31
3.2 最佳化演算法 33
3.2.1 同步擾動近似演算法 33
3.2.2 篩選變化解類電磁演算法 34
3.3 演算法之虛擬碼 36
第四章 實作結果與模擬測試 40
4.1 設計曲面與誤差計算參數 40
4.2 結果分析 41
4.5 模擬測試 51
第五章 改良式篩選變化解類電磁演算法 54
第六章 最佳化刀具路徑於不同座標系 58
6.1 逆運動轉換 58
6.2 非線性誤差 59
6.3 結果分析 61
第七章 表面粗糙度 63
7.1 十點平均粗糙度 63
7.2 結果分析 64
第八章 結論與未來工作 67
8.1結論 67
8.2 未來工作 68
參考文獻 69
附錄一 測試曲面 72
附錄二 測試曲面控制點座標 73


[1] C.-H. Chu and J.-T. Chen, "Tool path planning for five-axis flank milling with developable surface approximation," The International Journal of Advanced Manufacturing Technology, vol. 29, pp. 707-713, 2006.
[2] R. F. Harik, H. Gong, and A. Bernard, "5-axis flank milling: A state-of-the-art review," Computer-Aided Design, vol. 45, pp. 796-808, 2013.
[3] P.-H. Wu, Y.-W. Li, and C.-H. Chu, "Tool path planning for 5-axis flank milling based on dynamic programming techniques," in International Conference on Geometric Modeling and Processing, 2008, pp. 570-577.
[4] C.-H. Chu, C.-T. Lee, K.-W. Tien, and C.-J. Ting, "Efficient tool path planning for 5-axis flank milling of ruled surfaces using ant colony system algorithms," International Journal of Production Research, vol. 49, pp. 1557-1574, 2011.
[5] C.-H. Chu and H.-T. Hsieh, "Generation of reciprocating tool motion in 5-axis flank milling based on particle swarm optimization," Journal of Intelligent Manufacturing, vol. 23, pp. 1501-1509, 2012.
[6] C.-L. Kuo, C.-H. Chu, Y. Li, X. Li, and L. Gao, "Electromagnetism-like algorithms for optimized tool path planning in 5-axis flank machining," Computers & Industrial Engineering, vol. 84, pp. 70-78, 2015.
[7] D. M. Tsay and M. J. Her, "Accurate 5-axis machining of twisted ruled surfaces," Journal of Manufacturing Science and Engineering, vol. 123, pp. 731-738, 2001.
[8] H.-T. Hsieh, Y.-C. Tsai, and C.-H. Chu, "Multi-pass progressive tool path planning in five-axis flank milling by particle swarm optimisation," International Journal of Computer Integrated Manufacturing, vol. 26, pp. 977-987, 2013.
[9] C.-H. Chu, H.-T. Hsieh, C.-H. Lee, and C. Yan, "Spline-constrained tool-path planning in five-axis flank machining of ruled surfaces," The International Journal of Advanced Manufacturing Technology, vol. 80, pp. 2097-2104, 2015.
[10] G. E. Farin, J. Hoschek, and M. S. Kim, Handbook of Computer Aided Geometric Design: Elsevier, 2002.
[11] R. Lin and C. Hu, "Modeling of the dynamic contour error of five-axis CNC machine tools," ASME Dynamic Systems Control and Control Division, Ver, vol. 67, pp. 861-868, 1999.
[12] K. Zhang, L. Zhang, and Y. Yan, "Single spherical angle linear interpolation for the control of non-linearity errors in five-axis flank milling," The International Journal of Advanced Manufacturing Technology, pp. 1-11, 2016.
[13] J. C. Spall, "Simultaneous perturbation stochastic approximation," Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control, pp. 176-207, 2003.
[14] Ş. İ. Birbil and S.-C. Fang, "An electromagnetism-like mechanism for global optimization," Journal of global optimization, vol. 25, pp. 263-282, 2003.
[15] K. Xu and K. Tang, "Optimal Workpiece Setup for Time-Efficient and Energy-Saving Five-Axis Machining of Freeform Surfaces," Journal of Manufacturing Science and Engineering, vol. 139, p. 051003, 2017.
[16] M. Munlin, S. S. Makhanov, and E. L. Bohez, "Optimization of rotations of a five-axis milling machine near stationary points," Computer-Aided Design, vol. 36, pp. 1117-1128, 2004.
[17] H. Hsu and P. A. Lachenbruch, "Paired t test," Wiley Encyclopedia of Clinical Trials, 2008.

[18] 郭奇龍,結合統計方法之五軸側銑路徑最佳化,清華大學工業工程與工 程管理學系,博士論文,2016。
[19] 沈哲瑋,透過加工路徑規劃減少五軸數控工具機之運動能量消耗,清華大學工業工程與工程管理學系,碩士論文計劃書,2017。
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *