帳號:guest(18.223.172.108)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):洪曉晴
作者(外文):Hung, Hsiao-Ching
論文名稱(中文):求解晶圓廠黃光區之負荷平衡問題
論文名稱(外文):Solving the Loading Balance Problem in the Photolithography Area
指導教授(中文):陳建良
指導教授(外文):Chen, James C.
口試委員(中文):陳盈彥
陳子立
口試委員(外文):Chen, Yin-Yann
Chen, Tzu-Li
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:104034525
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:83
中文關鍵詞:負荷平衡拆批基因演算法區域搜尋模糊邏輯控制
外文關鍵詞:Loading BalanceLot SplittingHybrid Genetic Algorithm (HGA)Local SearchFuzzy Logic Controller (FLC)
相關次數:
  • 推薦推薦:0
  • 點閱點閱:309
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在半導體產業中,其製造過程是非常繁瑣的,一片晶圓需經過數百道製程並耗時數個月才能完成生產,如何提升機台使用率已達到客戶交期是一個重要的議題。負荷平衡為黃光區存在的問題,若所需專用機台的第一層關鍵層沒有安排恰當,其可能會影響到後續層別的製程。故在本研究中,將提出一個整數規劃模型與啟發式演算法解決此負荷平衡的問題,將專用機台及拆批限制納入考量,本研究目標為最小化機台間負荷差異。專用機台限制是當產品在回流至製程中,其關鍵層加工的機台須與第一層關鍵層所使用的機器相同。拆批限制表示一張訂單可拆成數張子訂單,並允許其在不同機台上生產。在混合基因演算法中,第一步驟進行拆批決策,第二步驟將拆批後的訂單依序指派至機台;此外,本研究於演算法中加入區域搜尋及模糊邏輯控制,模糊邏輯控制打破以往傳統基因演算法參數皆固定,其是以連續兩世代平均適應值得差異來自行調整交換率及突變率。經由實驗數據證明,混合基因演算法能有效地解決拆批及專用機台限制下的負荷平衡問題。
In the semiconductor industry, the manufacturing processes are very complicated. One wafer lot passes through hundreds of operations and the processing procedure takes a few months to complete. In order to meet the customer deadline, how to utilize the machine capacity efficiency is an essential issue. Loading balance in photolithography area is a crucial problem. If the first layer did not appropriately assign due to the dedication scenarios, it would affect the following layer process. Therefore, in this study, the mathematical model is proposed to solve the loading balance problem for photolithography area. Taking machine dedication, and lot splitting restriction into account, we aim to minimize the loading difference between each machine. The machine dedication constraint is set for the layer-by-layer process on wafers so that the circuit patterns in critical layers can be correctly connected to provide particular functions. Lot splitting means that an order can be split into sub-orders and these sub-orders can be processed independently on machines. This research further proposed a hybrid genetic algorithm (HGA) to solve the lot splitting and capacity allocation problem to minimize the sum of loading level among machines. First, the algorithm focuses on the search of the best number of lot splitting, and then gradually transfers towards finding the optimal capacity allocation for each machine. Moreover, in this research, the local search mechanism is used to improve solution search to be more flexible and an auto-tuning approach is proposed to adopted the fuzzy logic controller to adjust the probability of crossover rate and mutation rate, by considering the change of the average fitness value of parents and offspring in two continuous generations. The experiment results demonstrate that the HGA can efficiently solve the loading balance problem under lot splitting and dedicated machine constraints.
摘要 I
ABSTRACT II
致謝 III
Contents IV
List of Tables V
List of Figures VI
Chapter 1: Introduction 1
1.1 Background and Motivation 1
1.2 Research Objective 3
1.3 Research Method 3
1.4 Organization of Thesis 4
Chapter 2: Literature Review 6
2.1 Capacity Planning and Scheduling Problem in Photolithography Area 6
2.1.1 Machine dedication 10
2.1.2 Machine capability 11
2.1.3 Reticle limitation 12
2.2 Lot Splitting 17
2.3 Genetic Algorithm 19
2.4 Fuzzy Logic Controller (FLC) 21
Chapter 3: Problem Definition 24
3.1 Problem Statement 24
3.2 Notations and Assumptions 27
3.3 Problem Formulation 29
Chapter 4: Methodology 35
4.1 Algorithm Framework 35
4.2 Steps of Hybrid Genetic Algorithm 37
4.2.1 Set parameters 37
4.2.2 Chromosome representation 37
4.2.3 Initial population generation 39
4.2.4 Unfeasible chromosomes repairing mechanism 39
4.2.5 Fitness evaluation 42
4.2.6 Selection operator 42
4.2.7 Generation replacement 42
4.2.8 Crossover operator 43
4.2.9 Mutation operator 44
4.2.10 Local search 45
4.2.11 Fuzzy logic controller 46
4.2.12 Termination 50
Chapter 5: Computational Study 51
5.1 Scenario Illustration 51
5.2 Comparison Results of LINGO and HGA 53
5.3 Comparison Results of Different Types GA 56
5.3.1 Objective value comparison 59
5.3.2 Runtime comparison 64
5.3.3 Convergence condition comparison 65
5.3.4 Relative improvement among GA and other algorithms 67
5.4 Without Lot Splitting and Variable Lot Splitting Analysis 68
Chapter 6: Conclusion 72
Reference 74
Appendix 81
Akcalt, E., Nemoto, K., & Uzsoy, R. (2001). Cycle-time improvements for photolithography process in semiconductor manufacturing. In IEEE Transactions on Semiconductor Manufacturing, 14(1), 48-56.

Akcali, E., & Uzsoy, R. (2000). A sequential solution methodology for capacity allocation and lot scheduling problems for photolithography. In Twenty Sixth IEEE/CPMT International Electronics Manufacturing Technology Symposium, Santa Clara, pp. 374-381.

Aytug, H., et al. (2003). "Use of genetic algorithms to solve production and operations management problems: a review." International Journal of Production Research, 41(17), 3955-4009.

Bitar, A., Dauzère-Pérès, S., Yugma, C., & Roussel, R. (2016). A memetic algorithm to solve an unrelated parallel machine scheduling problem with auxiliary resources in semiconductor manufacturing. Journal of Scheduling, 19(4), 367-376.

Bukchin, J., Tzur, M., & Jaffe, M. (2002). Lot splitting to minimize average flow-time in a two-machine flow-shop. IIE Transactions, 34(11), 953-970.

Buscher, U., & Shen, L. (2009). An integrated tabu search algorithm for the lot streaming problem in job shops. European Journal of Operational Research, 199(2), 385-399.

Cakici, E., & Mason, S. J. (2007). Parallel machine scheduling subject to auxiliary resource constraints. Production Planning and Control, 18(3), 217-225.
Chamnanlor, C., Sethanan, K., Chien, C. F., & Gen, M. (2014). Re-entrant flow shop scheduling problem with time windows using hybrid genetic algorithm based on auto-tuning strategy. International Journal of Production Research, 52(9), 2612-2629.

Chen, J. C., Chen, Y. Y., & Liang, Y. (2016). Application of a genetic algorithm in solving the capacity allocation problem with machine dedication in the photolithography area. Journal of Manufacturing Systems, 41, 165-177.

Cheng, R., Gen, M., & Tsujimura, Y. (1999). A tutorial survey of job-shop scheduling problems using genetic algorithms, part II: hybrid genetic search strategies. Computers & Industrial Engineering, 36(2), 343-364.

Chou, Y. C. (2000). A methodology for product mix planning in semiconductor foundry manufacturing. IEEE Transactions on Semiconductor Manufacturing, 13(3), 278-285.

Chung, S. H., & Huang, H. W. (2001). Loading allocation algorithm with machine capability restrictions for wafer fabrication factories. Journal of the Chinese Institute of Industrial Engineers, 18(4), 82-96.

Chung, S. H., Huang, C. Y., & Lee, A. H. I. (2006). Capacity allocation model for photolithography workstation with the constraints of process window and machine dedication. Production Planning & Control, 17(7), 678-688.

Chung, S. H., Huang, C. Y., & Lee, A. H. I. (2006, May). Using constraint satisfaction approach to solve the capacity allocation problem for photolithography area. In International Conference on Computational Science and Its Applications, Glasgow, pp. 610-620.
Chung, S. H., Huang, C. Y., & Lee, A. H. (2008). Heuristic algorithms to solve the capacity allocation problem in photolithography area (CAPPA). OR Spectrum, 30(3), 431-452.

Chung, Y. H., Cho, K. H., Park, S. C., & Kim, B. H. (2016, December). Dedication load based dispatching rule for photolithography machines with dedication constraint. In Proceedings of the Winter Simulation Conference, Arlington, pp. 2731-2739. IEEE Press.

Collotta, M., Bello, L. L., & Pau, G. (2015). A novel approach for dynamic traffic lights management based on Wireless Sensor Networks and multiple fuzzy logic controllers. Expert Systems with Applications, 42(13), 5403–5415.

Dauzere-Peres, S., & Lasserre, J. B. (1993). An iterative procedure for lot streaming in job-shop scheduling. Computers & Industrial Engineering, 25(1), 231-234.

Defersha, F. M., & Chen, M. (2010). A hybrid genetic algorithm for flowshop lot streaming with setups and variable sublots. International Journal of Production Research, 48(6), 1705-1726.

Delp, D., Si, J., & Fowler, J. W. (2006). The development of the complete X-factor contribution measurement for improving cycle time and cycle time variability. IEEE Transactions on Semiconductor Manufacturing, 19(3), 352-362.

Huang, R. H. (2010). Multi-objective job-shop scheduling with lot-splitting production. International Journal of Production Economics, 124(1), 206-213.


Ip, W. H., Li, Y., Man, K. F., & Tang, K. S. (2000). Multi-product planning and scheduling using genetic algorithm approach. Computers & Industrial Engineering, 38(2), 283-296.

Kim, S., Yea, S. H., & Kim, B. (2002). Shift scheduling for steppers in the semiconductor wafer fabrication process. IIE Transactions, 34(2), 167-177.

Klemmt, A., Lange, J., Weigert, G., Lehmann, F., & Seyfert, J. (2010, December). A multistage mathematical programming based scheduling approach for the photolithography area in semiconductor manufacturing. In Proceedings of the Winter Simulation Conference, Maryland, pp. 2474-2485.

Kumar, P. R. (1993). Re-entrant lines. Queueing systems, 13(1-3), 87-110.

Lee, C. C. (1990). Fuzzy logic in control systems: fuzzy logic controller. I. IEEE Transactions on Systems, Man, and Cybernetics, 20(2), 404-418.

Lin, L., & Gen, M. (2009). Auto-tuning strategy for evolutionary algorithms: balancing between exploration and exploitation. Soft Computing, 13(2), 157-168.

Liu, S. C. (2003). A heuristic method for discrete lot streaming with variable sublots in a flow shop. The International Journal of Advanced Manufacturing Technology, 22(9-10), 662-668.

Low, C. P., & Fang, C. (2005, January). On the load-balanced demand points assignment problem in large-scale wireless LANs. In International Conference on Information Networking, Berlin, pp. 21-30.
Mhiri, E., Jacomino, M., Mangione, F., Vialletelle, P., & Lepelletier, G. (2015). Finite capacity planning algorithm for semiconductor industry considering lots priority. IFAC-PapersOnLine, 48(3), 1598-1603.

Mönch, L., Prause, M., & Schmalfuss, V. (2001, December). Simulation-based solution of load-balancing problems in the photolithography area of a semiconductor wafer fabrication facility. In Proceedings of the Winter Simulation Conference, Arlington, pp. 1170-1177.

Osman, M. S., Abo-Sinna, M. A., & Mousa, A. A. (2005). A combined genetic algorithm-fuzzy logic controller (GA–FLC) in nonlinear programming. Applied Mathematics and Computation, 170(2), 821-840.

Pan, Q. K., & Ruiz, R. (2012). An estimation of distribution algorithm for lot-streaming flow shop problems with setup times. Omega, 40(2), 166-180.

Park, S., Fowler, J., Carlyle, M., & Hickie, M. (1999). Assessment of potential gains in productivity due to proactive reticle management using discrete event simulation. In Proceedings of the Winter Simulation Conference, Phoenix, pp. 856-864.

Potts, C. N., & Baker, K. R. (1989). Flow shop scheduling with lot streaming. Operations Research Letters, 8(6), 297-303.

Reiter, S. (1966). A system for managing job-shop production. The Journal of Business, 39(3), 371-393.


Sabzi, H. Z., Humberson, D., Abudu, S., & King, J. P. (2016). Optimization of adaptive fuzzy logic controller using novel combined evolutionary algorithms, and its application in Diez Lagos flood controlling system, Southern New Mexico. Expert Systems with Applications, 43, 154-164.

Shr, A., Liu, A., & Chen, P. P. (2006). A load balancing method for dedicated photolithography machine constraint. In Information Technology For Balanced Manufacturing Systems, 339-348.

Shr, A. M., Liu, A., & Chen, P. P. (2006, September). Load balancing among photolithography machines in semiconductor manufacturing. In 3rd International IEEE Conference Intelligent Systems, London, 320-325.

Song, Y. H., Wang, G. S., Wang, P. Y., & Johns, A. T. (1997). Environmental/economic dispatch using fuzzy logic controlled genetic algorithms. IEE Proceedings-Generation, Transmission and Distribution, 144(4), 377-382.

Tasan, S. O. and S. Tunali (2008). "A review of the current applications of genetic algorithms in assembly line balancing." Journal of Intelligent Manufacturing, 19(1): 49-69.

Toki, A., & Ahmed, T. (2016). A review on washing machine using fuzzy logic controller. International Journal, 4(7), 64-67.

Toktay, L. B., & Uzsoy, R. (1998). A capacity allocation problem with integer side constraints. European Journal of Operational Research, 109(1), 170-182.

Wagner, B. J., & Ragatz, G. L. (1994). The impact of lot splitting on due date performance. Journal of Operations Management, 12(1), 13-25.

Wang, C. N., & Wang, C. H. (2007). A simulated model for cycle time reduction by acquiring optimal lot size in semiconductor manufacturing. The International Journal of Advanced Manufacturing Technology, 34(9-10), 1008-1015.

Yan, B., Chen, H. Y., Luh, P. B., Wang, S., & Chang, J. (2011, August). Optimization-based litho machine scheduling with multiple reticles and setups. IEEE International Conference on Automation Science and Engineering, Trieste, pp. 114-119.

Yun, Y., & Gen, M. (2003). Performance analysis of adaptive genetic algorithms with fuzzy logic and heuristics. Fuzzy Optimization and Decision Making, 2(2), 161-175.

黃慧雲. (2004). 具垂直鎖定機台特性下之產能需求規劃之設計-以晶圓廠黃光區為例 (Doctoral dissertation).
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *