帳號:guest(18.118.27.199)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林奇平
作者(外文):Lin, Chi-Ping
論文名稱(中文):以模擬最佳化求解具機會約束式之最小化成本冗餘配置問題
論文名稱(外文):Solving Minimum Cost Redundancy Allocation Problem with Chance Constraint Using Simulation Optimization
指導教授(中文):張國浩
指導教授(外文):Chang, Kuo-Hao
口試委員(中文):洪一峯
吳建瑋
口試委員(外文):Hung, Yi-Feng
Wu, Chien-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:104034522
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:43
中文關鍵詞:冗餘配置問題可靠度工程最小化成本問題模擬最佳化
外文關鍵詞:Redundancy Allocation ProblemReliability EngineeringCost OptimizationSimulation Optimization
相關次數:
  • 推薦推薦:0
  • 點閱點閱:875
  • 評分評分:*****
  • 下載下載:48
  • 收藏收藏:0
近年來可靠度最佳化的問題普遍受到重視,其領域中一個重要的問題為冗餘配置問題(Redundancy Allocation Problem),主要應用在許多大型且複雜的系統,像是電子系統、電力網路、通訊系統以及製造系統,是考慮在某些資源限制之下,探討如何在每一個子系統(subsystem)中藉由決定備品(component)種類或是增加備品的方式,使得整個系統在滿足特定可靠度條件下最小化總系統成本。在本論文中,我們主要針對兩個面向做討論。第一,我們考慮此問題在一個一般化拓撲結構的系統中,因在文獻中此類問題的系統大多都是考慮串並聯系統(series-parallel system),但實務問題的系統中連接方式可能含有邏輯判斷,所以不能用簡單的串並聯系統做描述。第二,此問題存在機會約束(chance constraint),需在滿足特定可靠度的前提下進行最佳化,而機會約束本身為一相當複雜之問題,當決策變數維度上升,將大幅提升其求解難度。而我們提出了一個以模擬最佳化為基礎的方法,使得我們可以考慮此問題為一般化拓撲結構的系統,且能有效率的在滿足機會約束下進行系統成本之最小化。並在數值分析中證明我們提出之方法能有效率的搜尋最佳解,且優於現存之求解方法。
Redundancy allocation problem (RAP), which aims to minimize the system total cost subject to some constraints on system reliability, represents an important problem in system design with many applications in areas such as electronic systems, power systems, telecommunication systems and manufacturing systems. In this paper, we extend RAP to a more generalized situation, First, the network topology is generalized, i.e., the components in the system can be of any logical relationship. Second, there exist chance constraints that the overall system reliability is required to exceed a prescribed value. We propose an efficient simulation optimization method. A numerical study shows that the proposed method can locate the optimal solution more efficiently compared to the existing methods.
摘要..................................I
Abstract.............................II
圖目錄................................V
表目錄................................VI
第一章 緒論...........................1
1.1研究背景與動機......................1
1.2研究目的............................2
1.3論文架構............................3
第二章 文獻回顧.......................5
2.1冗餘配置問題........................5
2.2模擬最佳化..........................9
第三章 數學模型.......................13
3.1問題定義...........................13
3.2符號定義...........................14
3.3冗餘配置問題模型....................14
第四章 求解方法.......................16
4.1可靠度之估計方法....................17
4.2 STRONG及運用之概念.................18
4.3定義設計區域........................20
4.4搜尋方向分割........................20
4.5決策變數之轉換......................21
4.6提出之演算法........................23
第五章 數值結果.......................29
5.1簡單網路系統........................29
5.1.1簡單網路系統─參數設定...........30
5.1.2簡單網路系統─演算法之參數設定....31
5.1.3簡單網路系統─數值結果............32
5.2複雜網路系統........................34
5.2.1複雜網路系統─參數設定...........35
5.2.2複雜網路系統─演算法之參數設定....36
5.2.3複雜網路系統─數值結果...........37
第六章 結論及未來目標.................39
6.1結論...............................39
6.2未來研究...........................39
參考文獻..............................41
Ardakan, M. A., and Hamadani, A. Z. (2014). Reliability optimization of series–parallel systems with mixed redundancy strategy in subsystems. Reliability Engineering & System Safety, 130, 132-139.
Box, G. E., and Wilson, K. B. (1951). On the experimental attainment of optimum Conditions. Journal of the Royal Statistical Society. Series B (Methodological), 13(1), 1-45.
Carson, Y., and Maria, A. (1997). Simulation optimization: methods and applications. In Proceedings of the 29th conference on Winter simulation (pp. 118-126).
Chambari, A., Rahmati, S. H. A., and Najafi, A. A. (2012). A bi-objective model to optimize reliability and cost of system with a choice of redundancy strategies. Computers & Industrial Engineering, 63(1), 109-119.
Chang, K. H., Hong, L. J., and Wan, H. (2013). Stochastic trust-region response-surface method (strong) - a new response-surface framework for simulation optimization. INFORMS Journal on Computing, 25(2), 230-243.
Chern, M. S. (1992). On the computational complexity of reliability redundancy allocation in a series system. Operations Research Letters, 11(5), 309-315.
Coit, D. W., and Smith, A. E. (1996). Reliability optimization of series-parallel systems using a genetic algorithm. IEEE Transactions on Reliability, 45(2), 254-260.
Coit, D. W., and Smith, A. E. (1996). Solving the redundancy allocation problem using a combined neural network/genetic algorithm approach. Computers & Operations Research, 23(6), 515-526.
Coit, D. W., and Smith, A. E. (1996). Solving the redundancy allocation problem using a combined neural network/genetic algorithm approach. Computers & Operations Research, 23(6), 515-526.
Conn, A. R., Gould, N. I. M., and Toint, Ph. L. (2000). Trust-Region Methods. MPS-SIAM series on optimization, Philadelphia: Society for Industrial Mathematics.
Elegbede, A. C., Chu, C., Adjallah, K. H., and Yalaoui, F. (2003). Reliability allocation through cost minimization. IEEE Transactions on Reliability, 52(1), 106-111.
Fu, M. C. (2002). Optimization for simulation: Theory vs. practice. INFORMS Journal on Computing, 14(3), 192-215.
Fyffe, D. E., Hines, W. W., and Lee, N. K. (1968). System reliability allocation and a computational algorithm. IEEE Transactions on Reliability, 17(2), 64-69.
Ha, C., and Kuo, W. (2006). Reliability redundancy allocation: An improved realization for nonconvex nonlinear programming problems. European Journal of Operational Research, 171(1), 24-38.
Kong, X., Gao, L., Ouyang, H., and Li, S. (2015). Solving the redundancy allocation problem with multiple strategy choices using a new simplified particle swarm optimization. Reliability Engineering & System Safety, 144, 147-158.
Kulturel-Konak, S., Smith, A. E., and Coit, D. W. (2003). Efficiently solving the redundancy allocation problem using tabu search. IIE transactions, 35(6), 515-526.
Liang, Y. C., and Smith, A. E. (2004). An ant colony optimization algorithm for the redundancy allocation problem (RAP). IEEE Transactions on Reliability, 53(3), 417-423.
Lin, J. Y., and Donaghey, C. E. (1993). A Monte Carlo simulation to determine minimal cut sets and system reliability. IEEE Proceedings of the 1993 Annual Reliability and Maintainability Symposium (pp. 246-249).
Mahato, S. K. (2016a) Optimization of Redundancy Allocation Problem with Defuzzified Fuzzy Reliabilities. Imperial Journal of Interdisciplinary Research, 2(2), 266-276.
Mahato, S. K. (2016b) Optimization of System Reliability of an n-Stage Parallel-Series RAP in Precise and Stochastic Environments. Imperial Journal of Interdisciplinary Research, 2(2), 355-343.
Mettas, A. (2000). Reliability allocation and optimization for complex systems. Proceedings of the 2000 Annual Reliability and Maintainability Symposium (pp. 216-221).
Misra, K. B., and Sharma, U. (1991). An efficient algorithm to solve integer-programming problems arising in system-reliability design. IEEE Transactions on Reliability, 40(1), 81-91.
Ramirez-Marquez, J. E., and Coit, D. W. (2004). A heuristic for solving the redundancy allocation problem for multi-state series-parallel systems. Reliability Engineering & System Safety, 83(3), 341-349.
Wang, Z., Chen, T., Tang, K., and Yao, X. (2009). A multi-objective approach to redundancy allocation problem in parallel-series systems. In Proceedings of IEEE
Congress on Evolutionary Computation (pp. 582-589).
Yeh, W. C., Lin, Y. C., Chung, Y. Y., and Chih, M. (2010). A particle swarm optimization approach based on Monte Carlo simulation for solving the complex network reliability problem. IEEE Transactions on Reliability, 59(1), 212-221.
Zhao, R., and Liu, B. (2003). Stochastic programming models for general redundancy-optimization problems. IEEE Transactions on Reliability, 52(2), 181-191.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *