帳號:guest(18.191.122.146)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):郭泓志
作者(外文):Guo, Hong-Zhi
論文名稱(中文):應用兩階段解碼之遺傳演算法於 TFT-LCD陣列製造之動態排程問題
論文名稱(外文):A Two-phase Decoding Genetic Algorithm Approach for Dynamic Scheduling in TFT-LCD Array Manufacturing
指導教授(中文):簡禎富
指導教授(外文):Chien, Chen-Fu
口試委員(中文):鄭家年
許嘉裕
口試委員(外文):Zheng, Jia-Nian
Hsu, Chia-Yu.
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:104034516
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:53
中文關鍵詞:訂單式生產遺傳演算法TFT-LCD黃光區動態排程滾動式排程
外文關鍵詞:Job shop schedulingGenetic algorithmsThin-film transistor-liquid crystal display (TFT-LCD)PhotolithographyDynamic schedulingRolling Scheduling
相關次數:
  • 推薦推薦:0
  • 點閱點閱:161
  • 評分評分:*****
  • 下載下載:23
  • 收藏收藏:0
隨著需求的快速變化和智慧製造的彈性決策,TFT-LCD廠面臨巨大的客戶群及多樣的產品別。因此,在維持產品品質情況下如何提升生產力成為一個重要的議題。由於黃光區為瓶頸站點,本研究以黃光區的排程為目標,同時考慮產品的來到時間。為了解決來到時間的不確定性,本研究發展了兩階段解碼之遺傳演算法(TDGA)並結合滾動式的排程,以解決在黃光區的動態排程問題。透過染色體解碼設計,TDGA也可避免重工與產能不均的問題。為了驗證其效度,本研究透過台灣某實際的TFT-LCD 廠資料作為實證研究,分析TDGA與有左移機制之遺傳演算法的表現。實驗結果顯示,TDGA可以縮短在工單之間的閒置時間以提升機台利用率到99%以上,進而獲得較高品質的解。因此在所有情境之下,TDGA的表現皆比左移機制之遺傳演算法來得好。
Due to the rapid change of the market and decision flexibilities of intelligent manufacturing, TFT-LCD industries are facing the challenges of a huge number of customers and different kinds of products. Therefore, it is important to enhance productivity as well as remain product quality. Because photolithography stage is the bottleneck, this study focuses on photolithography scheduling which considers job arrivals. To deal with the uncertainty of arrival time, this study develops Two-phase Decoding Genetic Algorithm (TDGA) combined with rolling strategy for dynamic scheduling in photolithography stage under complex restrictions. TDGA can also avoid the reworked problem and load unbalancing through the design of chromosome. For validation, TDGA is also compared with GA which has the left-shift mechanism through empirical data from a leading TFT-LCD industry in Taiwan. The experimental result shows that TDGA can shorten the idle time between jobs. It can obtain a high quality solution with 99% machine utilization. Thus, TDGA performances better than GA in all scenarios.
Table Contents ii
Figure Contents iii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Objective 2
1.3 Structure of the study 2
Chapter 2 Literature Review 4
2.1 The photolithography process 4
2.2 Scheduling problems in the TFT-LCD 6
2.3 Genetic algorithm 10
2.4 Dynamic scheduling 13
Chapter 3 Model Construction 16
3.1 Structure of the photolithography scheduling problem 17
3.2 Mathematical model 19
3.3 Numerical example 22
Chapter 4 Genetic Algorithm of TFT-LCD 23
4.1 Structure of the TDGA 23
4.2 Rolling mechanism for dynamic scheduling 32
Chapter 5 Empirical Study 35
5.1 Background and problem description 35
5.2 Parameter and scenario setting 35
5.3 Performance analysis 38
Chapter 6 Conclusion 49
6.1 Contribution 49
6.2 Future research 49
References 50

簡禎富(2005),決策分析與管理,雙葉書廊,台北。
林昇甫、徐永吉(2009),遺傳演算法及其應用,五南書局,台北。
辛宛珉(2012),半導體廠黃光區派工紫式決策架構,清華大學工業工程與工程 管理學系學位論文。
Wu, S. D., Erkoc, M., & Karabuk, S., (2005), “Managing capacity in the high-tech industry: A review of literature, ” The Engineering Economist, Vol. 50, No. 2, pp. 125-158.
Flapper, S. D. P., Fransoo, J. C., Broekmeulen, R. A., & Inderfurth, K., (2002), “Planning and control of rework in the process industries: a review,” Production Planning & Control, Vol. 13, No. 1, pp. 26-34.
Pinedo M., (1995), “Scheduling theory, algorithms, and systems,” IIE Transactions, Vol. 28, No. 8, pp. 695-698.
A.A. Fredericks, (1986), “Performance analysis modeling for manufacturing lines,” AT&T Technical Journal, Vol. 65, No. 4, pp. 25-34
Sarin, S. C., Varadarajan, A., & Wang, L., (2011), “A survey of dispatching rules for operational control in wafer fabrication,” Production Planning and Control, Vol. 22, No. 1, pp. 4-24.
Goldratt, E. M., & Cox, J., (1984), “The goal: excellence in manufacturing,” North River Press.
Toba, H., Izumi, H., Hatada, H., & Chikushima, T., (2005), “Dynamic load balancing among multiple fabrication lines through estimation of minimum inter-operation time,” IEEE Transactions on Semiconductor Manufacturing, Vol. 18, No. 1, pp. 202-213.
Bagherinia, A., Joharpour, A., Hojatkhah, S., & Bemana, A., (2012), “A novel algorithm for process scheduling in multi processor systems,” In Education and e-Learning Innovations (ICEELI), pp. 1-4.
Harchol-Balter, M., Crovella, M. E., & Murta, C. D., (1999), “On choosing a task assignment policy for a distributed server system,” Journal of Parallel and Distributed Computing, Vol. 59, No. 2, pp. 204-228.
Chern, C. C., & Liu, Y. L., (2003), “Family-based scheduling rules of a sequence- dependent wafer fabrication system,” IEEE Transactions on Semiconductor Manufacturing, Vol. 16, No. 1, pp. 15-25.
Chen-Fu Chien, Member, IEEE, Che-Wei Chou, and Hui-Chun Yu, (2016), “A Novel Route Selection and Resource Allocation Approach to Improve the Efficiency of Manual Material Handling System in 200-mm Wafer Fabs for Industry 3.5,” IEEE Transactions on automation science and engineering, Vol. 13, No. 4, pp. 1576-1580.
Park, S., Fowler, J., Carlyle, M., & Hickie, M., (1999), “Assessment of potential gains in productivity due to proactive reticle management using discrete event simulation,” In Simulation Conference Proceedings, Vol. 1, pp. 856-864.
Kim, Y. D., Dong-Ho, L., Jung-Ug, K., & Roh, H. K., (1998), “A simulation study on lot release control, mask scheduling, and batch scheduling in semiconductor wafer fabrication facilities,” Journal of Manufacturing Systems, Vol. 17, No. 2, pp. 107.
Gen, M., & Lin, L., (2008), “Genetic Algorithms,” Wiley Encyclopedia of Computer Science and Engineering.”
Garen, J., (2004), “A genetic algorithm for tackling multiobjective job-shop scheduling problems,” Metaheuristics for Multiobjective Optimisation, Springer Science & Business Media, Springer Berlin Heidelberg, pp. 201-219.
Chen, S. H., Chang, C. K., & Kuo, C. L., (2005), “Optimal scheduling in color filter manufacturing,” Journal of the Chinese Institute of Industrial Engineers,” Vol. 22, No. 4, pp. 301-308.
Lee, J., Kang, M., Park, G. L., & Shin, S. Y., (2007), “Design of a reliable real-time scheduling policy for dual-channel networks,” Journal of Information Science and Engineering, Vol. 23, No. 5, pp. 1407-1419.
Abdeyazdan, M., & Rahmani, A. M., (2008), “Multiprocessor task scheduling using a new prioritizing genetic algorithm based on number of task children,” Distributed and Parallel Systems, pp. 105-114.
Chen, Y. Y., & Lin, J. T., (2009), “A modified particle swarm optimization for production planningproblems in the TFT Array process,” Expert Systems with Applications, Vol. 36, No. 10, pp. 12264-12271.
Wu, H. H., Chen, C. P., Tsai, C. H., & Yang, C. J., (2010), “Simulation and scheduling implementation study of TFT-LCD Cell plants using Drum–Buffer– Rope system,” Expert Systems with Applications, Vol. 37, No. 12, pp. 8127- 8133.
Kang, Y. H., & Shin, H. J., (2010), “An adaptive scheduling algorithm for a parallel machine problem with rework processes,” International journal of production research, Vol. 48, No. 1, pp. 95-115.
Yang, F. C., & Kuo, C. N, (2010), “A time window rolling-and GA-based method for the ynamic dispatching problem in photolithography area,” Computers and Industrial Engineering, 40th International Conference, pp. 1-6..
Cho, H. M., Bae, S. J., Kim, J., & Jeong, I. J, (2011), “Bi-objective scheduling for reentrant hybrid flow shop using Pareto genetic algorithm,” Computers & Industrial Engineering, Vol. 61, No. 3, pp. 529-541.
Wu, J. Z., Hao, X. C., Chien, C. F., & Gen, M, (2012), “A novel bi-vector encoding genetic algorithm for the simultaneous multiple resources scheduling problem,” Journal of Intelligent Manufacturing, Vol. 23, No. 6, pp. 2255-2270.
Gen, M., Zhang, W., & Lin, L., (2015), “Multiobjective hybrid genetic algorithms for manufacturing scheduling: part II case studies of HDD and TFT-LCD,” Proceedings of the Ninth International Conference on Management Science and Engineering Management, Springer Berlin Heidelberg, pp. 27-54.
Chamnanlor, C., Sethanan, K., Gen, M., & Chien, C. F., (2015), “Embedding ant system in genetic algorithm for re-entrant hybrid flow shop scheduling problems with time window constraints,” Journal of Intelligent Manufacturing, pp. 1-17.
Wang, G. G., Gandomi, A. H., Alavi, A. H., & Hao, G. S., (2014), “Hybrid krill herd algorithm with differential evolution for global numerical optimization,” Neural Computing and Applications, Vol. 25, No. 2, pp. 297-308.
Gen, M., & Cheng, R., (2000), Genetic algorithm and engineering optimization, John Wily and Sons, New York.
Gen, M., & Cheng, R., (1997), “Foundations of genetic algorithms,” Genetic Algorithms and Engineering Design, pp. 1-41.
Raman, N., Talbot, F. B., & Rachamadugu, R. V., (1989), “Due date based scheduling in a general flexible manufacturing system.” Journal of Operations Management, Vol. 8, No. 2, pp. 115-132.
Zitzler, E., Laumanns, M., & Thiele, L., (2001), “SPEA2: Improving the strength Pareto evolutionary algorithm.”
Vieira, G. E., Herrmann, J. W., & Lin, E., (2003), “Rescheduling manufacturing systems: a framework of strategies, policies, and methods.” Journal of scheduling, Vol. 6, No. 1, pp. 39-62.
Lin, S. C., Goodman, E. D., & Punch III, W. F., (1997), “A Genetic Algorithm Approach to Dynamic Job Shop Scheduling Problem”, ICGA, pp. 481-488.
Fang, J., & Xi, Y., (1997), “A rolling horizon job shop rescheduling strategy in the dynamic environment,” The International Journal of Advanced Manufacturing Technology, Vol. 13, No. 3, pp. 227-232.
Lei, H. Y. J., (2004), “A Rolling Horizon Scheduling Strategy of General Control Based Rough Sets eneral Control Based Rough Sets,” Computer Engineering and Applications, Vol. 24, No. 2.
Hu, X. B., & Chen, W. H., (2005), “Genetic algorithm based on receding horizon control for arrival sequencing and scheduling,” Engineering Applications of Artificial Intelligence, Vol. 18, No.5, pp. 633-642.
Xing, L. N., Chen, Y. W., Wang, P., Zhao, Q. S., & Xiong, J., (2010), “A knowledge- based ant colony optimization for flexible job shop scheduling problems,” Applied Soft Computing, Vol. 10, No. 3, pp. 888-896.
Stolletz, R., & Zamorano, E., (2014), “A rolling planning horizon heuristic for scheduling agents with different qualifications,” Transportation Research Part E: Logistics and Transportation Review, Vol. 68, pp. 39-52.
Xia, H., Li, X., & Gao, L., (2016), “A hybrid genetic algorithm with variable neighborhood search for dynamic integrated process planning and scheduling,” Computers & Industrial Engineering, Vol. 102, pp. 99-112.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *