帳號:guest(3.144.84.179)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳又熒
作者(外文):Chen, You-Ying
論文名稱(中文):以模擬最佳化求解在連續監測系統下之最佳維修保養及備品存貨管理策略
論文名稱(外文):Optimal Condition-Based Maintenance and Inventory Policy in a Continuously Monitoring System Using Simulation Optimization
指導教授(中文):張國浩
指導教授(外文):Chang, Kuo-Hao
口試委員(中文):洪一峯
吳建瑋
口試委員(外文):Hung, Yi-Feng
Wu, Chien-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:104034512
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:63
中文關鍵詞:狀態基準維護模擬最佳化存貨管理政策不完美維修
外文關鍵詞:Condition-based maintenanceSimulation optimizationInventory policyImperfect maintenance
相關次數:
  • 推薦推薦:0
  • 點閱點閱:70
  • 評分評分:*****
  • 下載下載:32
  • 收藏收藏:0
本論文考慮於連續監測系統下的維修保養及備品存貨管理之問題,此問題中考慮不同工作站、機台和備品的系統下,同時最佳化狀態基準維護(condition-based maintenance)以及零件備品的存貨管理政策。零件的退化程度模型可以珈瑪過程(gamma process)描述。透過零件上的感應器,我們能夠連續監測零件的退化程度,一旦任一零件退化程度超過預定的閥值時,不完美維修或更換的維修保養動作將被執行。為了找出最佳的備品存貨管理政策及零件退化程度閥值,我們發展一個以模擬為基礎的最佳化方法(KMTR),此方法以Stochastic Trust-Region Response Surface Method (STRONG) 為基礎,結合克利金近似模型(kriging metamodel)以及Nelder-Mead simplex method進行求解。透過數值研究可以證實本篇提出的模型和方法能達到維修保養成本最小化。
This paper considers condition-based maintenance and spare parts inventory policy simultaneously for a system consisting of different machines and components. The degradation of the components are modeled by Gamma process. By the sensors on the components, we continuously monitor the degradation level of the components, and once the degradation level exceeds the predefined degradation thresholds, imperfect repair maintenance or replacement maintenance are performed. A simulation-based optimization approach is proposed to find the optimal components inventory policy and degradation level thresholds of components. The proposed approach is based on Stochastic Trust-Region Response Surface Method (STRONG), coupled with the Kriging metamodel and the Nelder-Mead simplex method. A numerical study shows that the proposed model and the method can achieve minimized maintenance cost as expected.
摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 VI
第一章 緒論 1
1.1研究背景與動機 1
1.2研究目的 2
1.3論文架構 3
第二章 文獻回顧 5
2.1維修保養問題 5
2.2維修保養的模擬最佳化 10
第三章 數學模型 15
3.1符號定義 15
3.2 問題定義 17
3.2.1零件的退化程度 17
3.2.2維修保養政策 18
3.2.3維修保養程度 19
3.2.4維修保養及備品存貨之假設 20
3.3維修保養數學模型 20
第四章 求解方法 23
4.1方法流程及架構 23
4.2定義信賴區域 24
4.3拉丁超立方抽樣(Latin Hypercube Sampling) 25
4.4建立克利金模型 26
4.5找尋最佳解 27
4.6 Ratio-Comparison(RC)及Sufficient-Reduction(SR)測試 31
4.7更新信賴區域 32
第五章 數值實驗 33
5.1測試問題 33
5.1.1測試函數 33
5.1.2參數設定 35
5.1.3數值結果 36
5.2個案研究 39
5.2.1簡單維修保養問題 40
5.2.2複雜維修保養問題 47
第六章 結論與未來研究 58
參考文獻 59
Acharya, D., Nagabhushanam, G., & Alam, S. S. (1986). Jointly optimal block-
replacement and spare provisioning policy. IEEE Transactions on Reliability, 35(4), 447-451.
Alrabghi, A., Tiwari, A., & Alabdulkarim, A. (2013, December). Simulation based
optimization of joint maintenance and inventory for multi-components manufacturing systems. In 2013 Winter Simulations Conference (WSC), 1109-1119.
Arunraj, N. S., & Maiti, J. (2010). Risk-based maintenance policy selection using AHP
and goal programming. Safety Science, 48(2), 238-247.
Besnard, F., & Bertling, L. (2010). An approach for condition-based maintenance
optimization applied to wind turbine blades. IEEE Transactions on Sustainable Energy, 1(2), 77-83.
Brezavscek, A., & Hudoklin, A. (2003). Joint optimization of block-replacement and
periodic-review spare-provisioning policy. IEEE Transactions on Reliability,
52(1), 112-117.
BSI (1984). Glossary of Maintenance Terms in Terotechnology. British Standard
Institution (BSI), London; BS 3811.
Chang, K. H. (2012). Stochastic Nelder–Mead simplex method-a new globally
convergent direct search method for simulation optimization. European Journal of Operational Research, 220(3), 684-694.
Chang, K. H., Hong, L. J., & Wan, H. (2013). Stochastic trust-region response-surface
method (strong)-a new response-surface framework for simulation optimization. INFORMS Journal on Computing, 25(2), 230-243.
Chen, M. C., Hsu, C. M., & Chen, S. W. (2006). Optimizing joint maintenance and
stock provisioning policy for a multi-echelon spare part logistics network. Journal of the Chinese Institute of Industrial Engineers, 23(4), 289-302.
Conn, A. R., Gould, N. I., & Toint, P. L. (2000). Trust Region Methods (Vol. 1). Siam.
Dieulle, L., Bérenguer, C., Grall, A., & Roussignol, M. (2003). Sequential condition-
based maintenance scheduling for a deteriorating system. European Journal of Operational Research, 150(2), 451-461.
Gaspar, B., Teixeira, A. P., & Soares, C. G. (2014). Assessment of the efficiency of
Kriging surrogate models for structural reliability analysis. Probabilistic Engineering Mechanics, 37, 24-34.
Huang, Z., Wang, C., Chen, J., & Tian, H. (2011). Optimal design of aeroengine turbine
disc based on kriging surrogate models. Computers & Structures, 89(1), 27-37.
Ilgin, M. A., & Tunali, S. (2007). Joint optimization of spare parts inventory and
maintenance policies using genetic algorithms. The International Journal of Advanced Manufacturing Technology, 34(5-6), 594-604.
Jardine, A. K., Lin, D., & Banjevic, D. (2006). A review on machinery diagnostics and
prognostics implementing condition-based maintenance. Mechanical Systems and Signal Processing, 20(7), 1483-1510.
Jin, R., Chen, W., & Simpson, T. W. (2001). Comparative studies of metamodelling
techniques under multiple modelling criteria. Structural and Multidisciplinary Optimization, 23(1), 1-13.
Labib, A. W. (2004). A decision analysis model for maintenance policy selection using
a CMMS. Journal of Quality in Maintenance Engineering, 10(3), 191-202.
Lapa, C. M. F., Pereira, C. M. N., & de Barros, M. P. (2006). A model for preventive
maintenance planning by genetic algorithms based in cost and reliability. Reliability Engineering & System Safety, 91(2), 233-240.
Leng, K., Ren, P., & Gao, L. (2006, June). A novel approach to integrated preventive
maintenance planning and production scheduling for a single machine using the chaotic particle swarm optimization algorithm. In 2006 6th World Congress on Intelligent Control and Automation, 2, 7816-7820.
Liao, H., Elsayed, E. A., & Chan, L. Y. (2006). Maintenance of continuously monitored
degrading systems. European Journal of Operational Research, 175(2), 821-835.
Li, C., Xu, M., Guo, S., & Wang, R. (2010). Multiobjective maintenance optimization
of the continuously monitored deterioration system. Journal of Systems Engineering and Electronics, 21(5), 791-797.
Li, H., Deloux, E., & Dieulle, L. (2016). A condition-based maintenance policy for
multi-component systems with Lévy copulas dependence. Reliability Engineering & System Safety, 149, 44-55.
Li, Y. G., & Nilkitsaranont, P. (2009). Gas turbine performance prognostic for
condition-based maintenance. Applied Energy, 86(10), 2152-2161.
Moré, J. J., Garbow, B. S., & Hillstrom, K. E. (1981). Testing unconstrained
optimization software. ACM Transactions on Mathematical Software (TOMS),
7(1), 17-41.
Nguyen, K. A., Do, P., & Grall, A. (2015). Multi-level predictive maintenance for multi-
component systems. Reliability Engineering & System Safety, 144, 83-94.
Pham, H., & Wang, H. (1996). Imperfect maintenance. European Journal of
Operational Research, 94(3), 425-438.
Rafiee, K., Feng, Q., & Coit, D. W. (2015). Condition-based maintenance for repairable
deteriorating systems subject to a generalized mixed shock model. IEEE Transactions on Reliability, 64(4), 1164-1174.
Rao, B. K. N. (1996). Handbook of Condition Monitoring. Elsevier.

Rezg, N., Xie, X., & Mati, Y. (2004). Joint optimization of preventive maintenance and
inventory control in a production line using simulation. International Journal of Production Research, 42(10), 2029-2046.
Sarker, R., & Haque, A. (2000). Optimization of maintenance and spare provisioning
policy using simulation. Applied Mathematical Modelling, 24(10), 751-760.
Shang, Y. W., & Qiu, Y. H. (2006). A note on the extended Rosenbrock function.
Evolutionary Computation, 14(1), 119-126.
Simpson, T. W., Mauery, T. M., Korte, J. J., & Mistree, F. (2001). Kriging models for
global approximation in simulation-based multidisciplinary design optimization. AIAA Journal, 39(12), 2233-2241.
Tandon, N., Yadava, G. S., & Ramakrishna, K. M. (2007). A comparison of some
condition monitoring techniques for the detection of defect in induction motor ball bearings. Mechanical Systems and Signal Processing, 21(1), 244-256.
Trutt, F. C., Sottile, J., & Kohler, J. L. (2002). Online condition monitoring of induction
motors. IEEE Transactions on Industry Applications, 38(6), 1627-1632.
Van Horenbeek, A., & Pintelon, L. (2013). A dynamic predictive maintenance policy
for complex multi-component systems. Reliability Engineering & System Safety, 120, 39-50.
Van Noortwijk, J. M. (2009). A survey of the application of gamma processes in
maintenance. Reliability Engineering & System Safety, 94(1), 2-21.
Wang, H. K., Huang, H. Z., Li, Y. F., & Yang, Y. J. (2016). Condition-based
maintenance with scheduling threshold and maintenance threshold. IEEE Transactions on Reliability, 65(2), 513-524.
Wang, L., Chu, J., & Mao, W. (2009). A condition-based replacement and spare
provisioning policy for deteriorating systems with uncertain deterioration to failure. European Journal of Operational Research, 194(1), 184-205.
Wang, W., & Zhang, W. (2005). A model to predict the residual life of aircraft engines
based upon oil analysis data. Naval Research Logistics (NRL), 52(3), 276-284.
Wang, Y., & Pham, H. (2011). A multi-objective optimization of imperfect preventive
maintenance policy for dependent competing risk systems with hidden failure. IEEE Transactions on Reliability, 60(4), 770-781.
Wright, S., & Nocedal, J. (1999). Numerical Optimization. Springer Science, 35, 67-68.
Yang, H., Mathew, J., & Ma, L. (2005). Fault diagnosis of rolling element bearings
using basis pursuit. Mechanical Systems and Signal Processing, 19(2), 341-356.
Yuan, Y. X. (1999). A review of trust region algorithms for optimization. In Proceedings
of the Fourth International Congress on Industrial and Applied Mathematics, 271-282.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *