帳號:guest(18.118.200.149)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林宇捷
作者(外文):Lin, Yu-Chieh
論文名稱(中文):自動化大組織共軛焦取像系統
論文名稱(外文):Automated Large-Volume Confocal Imaging System
指導教授(中文):傅建中
指導教授(外文):Fu, Chien-Chung
口試委員(中文):張大慈
江安世
林彥穎
蔣安忠
口試委員(外文):Chang, Dah-Tsyr
Chiang, Ann-Shyn
Lin, Yen-Yin
Chiang, An-Chung
學位類別:博士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:104033813
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:87
中文關鍵詞:顯微系統自動化控制組織影像人工智慧
外文關鍵詞:MicroscopeAutomationImagingAI
相關次數:
  • 推薦推薦:0
  • 點閱點閱:177
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
共軛焦顯微鏡是一種成熟的商用系統,常用於獲取次微米等級解析度的螢光生物圖像。然而,一般高數值孔徑物鏡的水平視野仍然限於數十微米乘以數十微米的範圍,而其垂直軸的視野穿透深度也因生物組織中的散射效應被限制。為了構建一個完整的果蠅神經元資料庫,在本研究中,整合組織澄清、軟組織切片、電動平移台和共軛焦顯像等技術建立了一個自動化體積共軛焦成像系統,並成功地以自動掃描取像的方式,在保持樣本不收縮變形的情況下,取得3毫米 x 2毫米 x 1毫米大小的完整果蠅樣本三維影像,內含神經元, 肌肉和外殼層等訊息,以此影像可初步建立果蠅全身神經影像標準模型,並將果蠅行為學研究中觀察到的特殊行為果蠅的神經影像嵌入此模型中,藉此研究大腦與身體之間的神經元聯結。
此外,本系統的技術應用不僅限於神經學研究,亦能夠拓展至其他動物軟組織大體積樣本取像,本研究中以此系統提供細胞核、細胞質甚至是免疫染色標記的三維生物組織病理學圖像,搭配深度學習人工智能演算法開發,可分析出病理組織中目標特徵區域,並進一步計算特徵區域的三維參數曲線。本技術於癌症組織檢體中,相較於傳統二維病理影像所提供之平面資訊更為全面,並且貼近組織原始樣貌型態,可完整呈現具有特異性的三維組織樣貌,為下一世代精準醫療提供更準確的診斷輔助資訊。
Confocal microscopy is a well-developed, commercially available system to acquire fluorescence biological images in sub-micron level resolution. However, the restricked field of view of high N.A. objective lenses and the penetration depth caused by scattering effects in turbid tissue, limited the application of this system. In this research, an automated large volume 3D imaging system was built up via integrated tissue clearing, three axis microtome, and confocal imaging techniques together, expand the image capability of confocal microscopy to millimeter scale. An automated scanning-sectioning loop was established with this system and have successfully acquire a whole Drosophila sample 3D image including neuron, muscle and cuticle channels which is 3 mm × 2 mm × 1 mm in size without shrinkage or distortion. This result demonstrated a preliminary representative whole Drosophila neuron model, which having the potential to build a comprehensive Drosophila neuron circuit. This model could be futher linked to Drosophila behavior experiment by expression neuron circuit pattern registration for studying the connectome between brain and body.
Furthermore, the application of this system not only limit into neuron research, but also capable to providing three-dimensional bio-tissue histopathology image with the nucleus, cytoplasmic, or even specific proteins labeling, these images could be implemented with artificial intelligence analysis software for next-generation precision diagnostic application.
摘要
Abstract
Chapter 1 – 緒論--------------------3
Chapter 2 - 系統設計與開發------------7
2.1 系統設計理念----------------------7
2.2 共軛焦顯微鏡系統------------------13
2.3 高速光學掃描系統------------------17
2.4 三維振盪切片機--------------------23
2.5 浸潤式組織澄清試劑-----------------29
Chapter 3 – 控制與分析軟體------------34
3.1 控制軟體與使用者介面設計------------34
3.2 分析軟體--------------------------36
3.2.1腫瘤分類模型開發-------------------38
3.2.2 腫瘤分割模型開發------------------45
Chapter 4 - 樣本製備-------------------50
4.1 製備材料簡介------------------------50
4.2 樣本製備流程------------------------52
Chapter 5 – 系統應用成果與討論-----------64
5.1 全果蠅體神經網路應用-----------------64
5.2三維組織病理應用----------------------71
Chapter 6 – 結論-----------------------78
參考文獻-------------------------------81
附錄-----------------------------------86
1. Pascual, A., & Préat, T. (2001). Localization of long-term memory within the Drosophila mushroom body. Science, 294(5544), 1115-1117.
2. Yu, D., Akalal, D. B. G., & Davis, R. L. (2006). Drosophila α/β mushroom body neurons form a branch-specific, long-term cellular memory trace after spaced olfactory conditioning. Neuron, 52(5), 845-855.
3. Pai, T. P., Chen, C. C., Lin, H. H., Chin, A. L., Lai, J. S. Y., Lee, P. T., Tully, T., & Chiang, A. S. (2013). Drosophila ORB protein in two mushroom body output neurons is necessary for long-term memory formation. Proceedings of the National Academy of Sciences, 110(19), 7898-7903.
4. Chen, C. C., Wu, J. K., Lin, H. W., Pai, T. P., Fu, T. F., Wu, C. L., Tully, T., & Chiang, A. S. (2012). Visualizing long-term memory formation in two neurons of the Drosophila brain. science, 335(6069), 678-685.
5. McGurk, L., Morrison, H., Keegan, L. P., Sharpe, J., & O'Connell, M. A. (2007). Three-dimensional imaging of Drosophila melanogaster. PLoS One, 2(9), e834.
6. Jährling, N., Becker, K., Schönbauer, C., Schnorrer, F., & Dodt, H. U. (2010). Three-dimensional reconstruction and segmentation of intact Drosophila by ultramicroscopy. Frontiers in systems neuroscience, 1.
7. Même, S., Joudiou, N., Szeremeta, F., Mispelter, J., Louat, F., Decoville, M., Locker, D., & Beloeil, J. C. (2013). In vivo magnetic resonance microscopy of Drosophilae at 9.4 T. Magnetic resonance imaging, 31(1), 109-119.
8. Sombke, A., Lipke, E., Michalik, P., Uhl, G., & Harzsch, S. (2015). Potential and limitations of X‐Ray micro‐computed tomography in arthropod neuroanatomy: A methodological and comparative survey. Journal of Comparative Neurology, 523(8), 1281-1295.
9. Mattei, A. L., Riccio, M. L., Avila, F. W., & Wolfner, M. F. (2015). Integrated 3D view of postmating responses by the Drosophila melanogaster female reproductive tract, obtained by micro-computed tomography scanning. Proceedings of the National Academy of Sciences, 112(27), 8475-8480.
10. Pende, M., Becker, K., Wanis, M., Saghafi, S., Kaur, R., Hahn, C., Pende, N., Foroughipour, M., Hummel, T., & Dodt, H. U. (2018). High-resolution ultramicroscopy of the developing and adult nervous system in optically cleared Drosophila melanogaster. Nature communications, 9(1), 1-12.
11. Dodt, H. U., Leischner, U., Schierloh, A., Jährling, N., Mauch, C. P., Deininger, K., Deussing, M. J., Eder, M., Zieglgänsberger, W., & Becker, K. (2007). Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nature methods, 4(4), 331-336.
12. Hsu, K. J., Lin, Y. Y., Chiang, A. S., & Chu, S. W. (2019). Optical properties of adult Drosophila brains in one-, two-, and three-photon microscopy. Biomedical optics express, 10(4), 1627-1637.
13. Li, A., Gong, H., Zhang, B., Wang, Q., Yan, C., Wu, J., Liu, Q., Zeng, S., & Luo, Q. (2010). Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain. Science, 330(6009), 1404-1408.
14. Ragan, T., Kadiri, L. R., Venkataraju, K. U., Bahlmann, K., Sutin, J., Taranda, J., Arganda-Carreras, I., Kim Y., Seung, H. S., & Osten, P. (2012). Serial two-photon tomography for automated ex vivo mouse brain imaging. Nature methods, 9(3), 255-258.
15. Economo, M. N., Clack, N. G., Lavis, L. D., Gerfen, C. R., Svoboda, K., Myers, E. W., & Chandrashekar, J. (2016). A platform for brain-wide imaging and reconstruction of individual neurons. Elife, 5, e10566.
16. Liu, Y. C., & Chiang, A. S. (2003). High-resolution confocal imaging and three-dimensional rendering. Methods, 30(1), 86-93.
17. Fristrom, J. W., Hill, R. J., & Watt, F. (1978). The procuticle of Drosophila: heterogeneity of urea-soluble proteins. Biochemistry, 17(19), 3917-3924.
18. Olympus. https://www.olympus.com
19. Yao, Y. C. (1983). Nyquist Frequency. MASSACHUSETTS INST OF TECH CAMBRIDGE STATISTICS CENTER.
20. Lin, Y. C., Lin, Y. Y., Huang, Y. H., & Chiang, A. C. (2019). A compact and portable laser radioactive decontamination system using passive Q-switched fiber laser and polygon scanner. Applied Radiation and Isotopes, 153, 108835.
21. Arnold, C. B., Pique, A., Auyeung, R., & Nurnberger, M. (2006). U.S. Patent No. 6,986,199. Washington, DC: U.S. Patent and Trademark Office.
22. Jeon, S., Kim, J., Lee, D., Baik, J. W., & Kim, C. (2019). Review on practical photoacoustic microscopy. Photoacoustics, 15, 100141.
23. Arnold, C. B., & McLeod, E. (2007). A new approach to adaptive optics for materials processing. Photonics Spectra, 41(11), 78-79.
24. Hsu, K. J., Lin, Y. Y., Lin, Y. Y., Su, K., Feng, K. L., Wu, S. C., Lin, Y. C., Chiang, A. S., & Chu, S. W. (2019). Millisecond two-photon optical ribbon imaging for small-animal functional connectome study. Optics Letters, 44(13), 3190-3193.
25. 蔡博宇。「利用共軛焦顯微鏡搭配自動化震盪切片掃描系統建立全果蠅三維模型之研究」。碩士論文,國立交通大學照明與能源光電研究所,2016。
26. Pantanowitz, L., Sharma, A., Carter, A. B., Kurc, T., Sussman, A., & Saltz, J. (2018). Twenty years of digital pathology: an overview of the road travelled, what is on the horizon, and the emergence of vendor-neutral archives. Journal of pathology informatics, 9(1), 40.
27. Farahani, N., Parwani, A. V., & Pantanowitz, L. (2015). Whole slide imaging in pathology: advantages, limitations, and emerging perspectives. Pathol Lab Med Int, 7(23-33), 4321.
28. Hou, L., Samaras, D., Kurc, T. M., Gao, Y., Davis, J. E., & Saltz, J. H. (2016). Patch-based convolutional neural network for whole slide tissue image classification. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2424-2433).
29. Abels, E., Pantanowitz, L., Aeffner, F., Zarella, M. D., van der Laak, J., Bui, M. M., Vemuri, V. NP., Parwani, A. V., Gibbs, J., Agosto-Arroyo, E., Beck, A. H., & Kozlowski, C. (2019). Computational pathology definitions, best practices, and recommendations for regulatory guidance: a white paper from the Digital Pathology Association. The Journal of pathology, 249(3), 286-294.
30. Fuchs, T. J., & Buhmann, J. M. (2011). Computational pathology: challenges and promises for tissue analysis. Computerized Medical Imaging and Graphics, 35(7-8), 515-530.
31. Barisoni, L., Lafata, K. J., Hewitt, S. M., Madabhushi, A., & Balis, U. G. (2020). Digital pathology and computational image analysis in nephropathology. Nature Reviews Nephrology, 16(11), 669-685.
32. Nawaz, S., & Yuan, Y. (2016). Computational pathology: Exploring the spatial dimension of tumor ecology. Cancer letters, 380(1), 296-303.
33. Nasrabadi, Nasser M. (2007) Pattern recognition and machine learning. Journal of electronic imaging 16(4), 049-901.
34. Goodfellow, I., Warde-Farley, D., Mirza, M., Courville, A., & Bengio, Y. (2013, May). Maxout networks. In International conference on machine learning (pp. 1319-1327). PMLR.
35. Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. (2012). Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580.
36. Robbins, H., & Monro, S. (1951). A stochastic approximation method. The annals of mathematical statistics, 400-407.
37. Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
38. Lin, Y. Y., Wang, L. C., Hsieh, Y. H., Hung, Y. L., Chen, Y. A., Lin, Y. C., Lin, Y. Y., & Chou, T. Y. (2022). Computer-assisted three-dimensional quantitation of programmed death-ligand 1 in non-small cell lung cancer using tissue clearing technology. Journal of translational medicine, 20(1), 1-12.
39. Michels, J., & Büntzow, M. (2010). Assessment of Congo red as a fluorescence marker for the exoskeleton of small crustaceans and the cuticle of polychaetes. Journal of Microscopy, 238(2), 95-101.
40. Lin, C. W., Lin, H. W., Chiu, M. T., Shih, Y. H., Wang, T. Y., Chang, H. M., & Chiang, A. S. (2015). Automated in situ brain imaging for mapping the Drosophila connectome. Journal of Neurogenetics, 29(4), 157-168.
41. Peng, Y. C., Lin, Y. C., Hung, Y. L., Fu, C. C., Chang, M. D. T., Lin, Y. Y., & Chou, T. Y. (2022). Rapid Histological Assessment of Prostate Specimens in the Three-dimensional Space by Hydrophilic Tissue Clearing and Confocal Microscopy. Journal of Histochemistry & Cytochemistry, 70(8), 597-608.
42. Lewis, E. B. (1978). A gene complex controlling segmentation in Drosophila. In Genes, development and cancer (pp. 205-217). Springer, Boston, MA.
43. Nüsslein-Volhard, C., & Wieschaus, E. (1980). Mutations affecting segment number and polarity in Drosophila. Nature, 287(5785), 795-801.
44. Reddy, P., Zehring, W. A., Wheeler, D. A., Pirrotta, V., Hadfield, C., Hall, J. C., & Rosbash, M. (1984). Molecular analysis of the period locus in Drosophila melanogaster and identification of a transcript involved in biological rhythms. Cell, 38(3), 701-710.
45. Bargiello, T. A., Jackson, F. R., & Young, M. W. (1984). Restoration of circadian behavioural rhythms by gene transfer in Drosophila. Nature, 312(5996), 752-754.
46. Chiang, A. S., Lin, C. Y., Chuang, C. C., Chang, H. M., Hsieh, C. H., Yeh, C. W., Shih, C. T., Wu, J. J., Wang, G. T., Che, Y. C., Wu, C. C., Chen, G. Y., Ching, Y. T., Lee, P. C., Lin C. Y., Lin, H.H., Wu, C. C., Hsu, H. W., Huang, Y. A., Chen J. Y., Chiang, H. J., Lu, C. F., Ni, R. F., Yeh, C. Y., & Hwang, J. K. (2011). Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Current biology, 21(1), 1-11.
47. Lin, Y. C., Chin, A. L., Lai, Y. S., Fu, C. C., Lin, Y.Y., & Chiang, A. S. (2019). Serial Tiled Z-stacks (STZ) microscopy of whole Drosophila connectome research at single cell resolution. OPTIC: Optics & Photonics Taiwan, International Conference, Taichung.
48. 李彥蓁。「建構果蠅全身神經網路圖譜」。碩士論文,國立清華大學生物科技研究所,2016。
49. Lin, Y. C., Chin, A. L., Lee, C.J., Fu, C. C., Lin, Y.Y., & Chiang, A. S. (2018). Automated large-volume confocal imaging system. Focus on Microscopy, Singapore.
50. Huff, J. (2015). The Airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio and super-resolution. Nature methods, 12(12), i-ii.
51. Jena, A. B., Chandra, A., Lakdawalla, D., & Seabury, S. (2012). Outcomes of medical malpractice litigation against US physicians. Archives of internal medicine, 172(11), 892-894.
52. Dintzis, S. M., Stetsenko, G. Y., Sitlani, C. M., Gronowski, A. M., Astion, M. L., & Gallagher, T. H. (2011). Communicating pathology and laboratory errors: anatomic pathologists’ and laboratory medical directors’ attitudes and experiences. American journal of clinical pathology, 135(5), 760-765.
53. Fu, Y. Y., Lin, C. W., Enikolopov, G., Sibley, E., Chiang, A. S., & Tang, S. C. (2009). Microtome-free 3-dimensional confocal imaging method for visualization of mouse intestine with subcellular-level resolution. Gastroenterology, 137(2), 453-465.
54. Chung, K., Wallace, J., Kim, S. Y., Kalyanasundaram, S., Andalman, A. S., Davidson, T. J., ... & Deisseroth, K. (2013). Structural and molecular interrogation of intact biological systems. Nature, 497(7449), 332-337.
55. Monteith, C., Jackson, H., Mechanic, J., Vemuri, V., Daniel, C., Parker, K., Martinez, M., Scott, K., Farahani, N., & England, S. (2019). Murine Mouse Models of Metastatic Colorectal Cancer in Lungs: Foci Counts in Three Dimensions. The FASEB Journal, 33(S1), lb3-lb3.
56. Wu, M. C., Chu, L. A., Hsiao, P. Y., Lin, Y. Y., Chi, C. C., Liu, T. H., Fu, C. C., & Chiang, A. S. (2014). Optogenetic control of selective neural activity in multiple freely moving Drosophila adults. Proceedings of the National Academy of Sciences, 111(14), 5367-5372.
(此全文20260118後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *