帳號:guest(18.222.117.211)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):莊秉勳
作者(外文):Chuang, Ping-Shun
論文名稱(中文):同步輻射加速器之低溫技術發展應用及元件設計
論文名稱(外文):Design and Development of Cryogenic Technology and Applications for Synchrotron Radiation Accelerators
指導教授(中文):王培仁
指導教授(外文):Wang, Pei-Jen
口試委員(中文):蔣小偉
劉承賢
黃睿哲
羅志宏
徐菘蔚
口試委員(外文):Chiang, Hsiao-Wei
Liu, Cheng-Hsien
Huang, Jui-Che
Lo, Chih-Hung
Hsu, Sung-Wei
學位類別:博士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:104033812
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:104
中文關鍵詞:同步輻射超低溫技術氦氣純化低溫永磁聚頻磁鐵熱交換器
外文關鍵詞:Synchrotron RadiationCryogenic TechnologyHelium purifierCPMUHeat Exchanger
相關次數:
  • 推薦推薦:2
  • 點閱點閱:37
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,同步輻射光源已成為高能物理、材料科學和生物學等多個科學領域研究的基礎且重要的儀器設備。同步輻射設備是基於粒子加速器架構使用高頻共振腔來加速電子,用以提升電子動能接近光速。更採用高磁場強度之磁鐵導引電子沿著加速器圓環而運行,並由永久聚頻磁鐵構成之週期性磁極產生電子之加速度運動,繼而發生同步輻射光源。同步輻射光源可應用於研究物質在原子和分子尺度之性質,近年來光源技術更是快速發展,世界各地陸續興建亮度更強的設備,以推動同步輻射光源之相關科學研究,加強推動科學新發現及創新技術力度。地理位置在台灣新竹的國家同步輻射研究中心(NSRRC),建造及操作台灣唯一的光子源(TPS)電子加速器,可提供高亮度之同步輻射光源於相關領域的基礎科學研究。針對高輝度及高準直性之X光源,必須使用液態氦和液態氮等超低溫流體維持超導高頻腔及低溫永磁插件磁鐵之運轉,其中超低溫技術之設計分析及運轉是重要之研究議題。本論文將針對低漏熱多內管型超低溫傳輸管路及低溫永磁聚頻插件磁鐵的液氮冷卻系統進行設計及分析,再針對液態氮冷卻之氦氣純化系統及各低溫元件進行基礎性研究,再根據結果進行設計分析製造及驗證。本論文之研究目的是提高低溫系統的效率及可靠度,達成同步輻射加速器所中裝置設備之高效率及高穩定之運轉目標,最後達成多內管型超低溫傳輸器長度及熱損降低達20%,並且在氦氣純化系統之研究初步成果節省成本約30%。綜上所述,本論文產出之超低溫技術及元件可裝設在台灣同步輻射光子源,預期在科學研究上提供更亮眼的貢獻。
In recent years, synchrotron light sources have become a fundamental and important tool and instrument for researchers in various scientific fields, such as high-energy physics, materials science, and biology etc. The synchrotron uses ultra-powerful magnets and RF resonant cavities to accelerate charged particles, such as electrons and protons, to approximate the speed of light. As the particles travel around the accelerator ring, they can emit synchrotron radiation in the band of X-rays, so that the properties of materials at the atomic and molecular scale could be measured and observed. The technology of synchrotron light sources has progressed rapidly on the construction of stronger and larger sources around the world. Many countries are now expending heavily in synchrotron research due to the consensus of the potential of expediting scientific discovery and technological innovation. In Taiwan, the National Synchrotron Radiation Research Center (NSRRC) has established a synchrotron light source, namely the Taiwan Photon Source (TPS), provides high-brilliance X-ray radiation for some prominent scientific applications. To operate the TPS in the maximal efficiency and performance, cryogenic refrigerants, mainly liquid helium and liquid nitrogen, are used to cool the superconducting cavities and magnets so that the superconducting state is maintained. Therefore, cryogenic technology is critical and essential for the daily operation of the TPS as well as other facilities in the light source. In this thesis, the design and analysis of low heat-loss multi-channel transfer line in cryogenic cooling system for Undulator is conducted. And, the helium purification vessel using liquid nitrogen cooling method is also investigated. The objective is to improve the efficiency and reliability of cryogenic systems used in the high performance TPS. The results are prominent to contributions in the scientific researches by synchrotron light source.
摘 要 I
ABSTRACT II
ACKNOWLEDGEMENTS III
TABLE OF CONTENTS IV
LIST OF TABLES AND FIGURES VIII
NOMENCLATURES AND NOTATIONS XV
CHAPTER 1 INTRODUCTION 1
1.1 Motivation 1
1.2 Literature Review 2
1.2.1 Heat Transfer in Low Loss Equipment 3
1.2.2 Thermal Conductivity 3
1.2.3 Radiation Losses 5
1.3 Objectives of Study 7
CHAPTER 2 MULTI-CHANNEL TRANSFER LINE DESIGN 8
2.1 Mechanical Properties 10
2.2 Thermal Properties 13
2.2.1 Design of Bellow for Thermal Contraction 13
2.2.2 Design of Spacer for Thermal Conduction 15
2.2.3 Design of Thermal Shield for Radiation 17
2.2.4 Design of Emissivity for Radiation 18
2.2.5 Design of Insulator for Radiation 19
2.2.6 Design of Vacuum Insulator for Heat convection 23
2.2.7 Manufacturing and Welding 24
2.3 CAE Simulations 26
2.3.1 Heat Losses 26
2.3.2 Mechanical Stresses and Displacement 28
2.4 Setup Verifications 29
2.4.1 Leakage Test 29
2.4.2 Sensors and Instrumentation 31
2.4.3 Layout of DVB/MCL Pipe Lines 35
2.4.4 Multi-Channel Transfer Line Experiments 35
2.4.5 Partile Test 36
2.4.6 Data Monitor and Analysis 38
2.5 Total Heat-Loss Experiment 39
2.6 Concluding Remarks 44
CHAPTER 3 LIQUID NITROGEN COOLING SYSTEM 45
3.1 Cooling Sources 46
3.2 Design of Liquid Nitrogen Cooling System 48
3.2.1 Design of Valve Box 49
3.2.2 Design of Bayonet Coupling 52
3.2.3 Design of Vessel 53
3.2.4 Design of Temperature Control 56
3.3 Experimental Verifications 57
3.4 Concluding Remarks 63
CHAPTER 4 FORCE COMPENSATING MODULE 65
4.1 Principle of Force Compensating Spring 66
4.2 Intrinsic Phase Errors by Strong Magnetic Forces 67
4.3 Long In-Vacuum Undulator 70
4.4 Undulator under Strong Magnetic Forces 75
4.5 Implemenatation of Sping Modules 77
4.6 Concluding Remarks 82
CHAPTER 5 HELLIUM PURIFIER 83
5.1 Description of Helium Purification 84
5.2 Design of Charcoal Vessel 85
5.2.1 Activated Charcoal 85
5.2.2 Mass Estimation of Charcoal Bed 87
5.2.3 Dimension Estimation of Charcola Bed 88
5.2.4 Pressure Drop Estimation 89
5.3 Pre-cooler 90
5.4 Double Pipe Counter-Flow Heat Exchanger 91
5.5 Vessel and Tube Heat Exchanger 93
5.6 Phase Seperator Vessel 93
5.7 Crystal Filter 95
5.8 Final Assembly of System 96
5.9 Concluding Remarks 98
CHAPTER 6 CONCLUSIONS AND FUTURE WORKS 99
6.1 Conclusions 99
6.2 Future Works 100
REFERENCES 102
American Wood Council, “American Wood Council Beam Design Formulas with Shear and Moment Diagrams”, 2007.
ASM International, “Atlas of Stress-Strain Curves, 2nd edition”, 2002
Barron, R. F., “Cryogenic systems Oxford University Press”, 1985
Basmadjian, D., “The Little Adsorption Book CRC Press”, 1 – 29, 1997.
Bizen, T., Hara, T., Maréchal, X., Seike, T., Tanaka, T., Kitamura, H., AIP Conf. Proc. 705,175, 2004.
Chuang, P. S. D., Liao, W. R, Tsai, H. H., Hsiao, F. Z., Li, H. C., Chang, S. H., Chiou, W. S., Lin, T. F., “Development of Multi-Channel Line for NSRRC Cryogenic System”, Proceedings of IPAC2016, Busan, Korea May 8-13 2016
Chuang, P. S., Tsai, H. H., Chiang, H. W., Hsiao, F. Z., Liao, W. R., Li, H. C., Chiou, W. S., Chang, S. H., Lin, T. F., “Experiment of Low Heat Loss Liquid Helium Transfer line”, IOP Conf. Series: Material Science and Engineering 502, 012072, Oxford, UK, 2019.
Clarke, J. A., “The Science and Technology of Undulators and Wigglers”, Oxford University Press, New York, Chapter 7, 2004.
Elleaume, P., Chubar, O., Chavanne, J., Proceedings of PAC97, Vancouver, B.C., Canada, p. 3509, 1997.
Flynn, T. M., “Cryogenic Engineering Marcel Dekker”, 1977.
Haselden, G.G., Cryogenic Fundamentals Academic Press, 375-401, 1971.
Huang, J. C., “NSRRC Activity Report”, 2021.
Huang, J. C., “A mechanical undulator frame to minimize intrinsic phase error”, The 10 th Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation, Paris, France, 2018.
Huang, J. C., Kitamura, H., Yang, C. S., “Development of cryogenic permanent magnet undulators at NSRRC”, Conference Proceedings 2054, 030022, 2019.
Huang, J. C., Kitamura, H., Yang, C. K., Chang, C. H., Chang ,C. H., Hwang, C. S., Phys. Rev. ST Accel. Beams 20, 064801, 2017.
Huang, J. C., Kitamura, H., Yang, C. S., Kohda, T., Mizumoto, S., Yang, C. K., Chang, C. H., Hwang, C. S. , Nucl. Instr. Meth., 1013,165650, 2021
Kidnay, A. J., Hiza, M. J., “High Pressure Adsorption Isotherms of Neon, Hydrogen and Helium at 76oK Advances in Cryogenic Engineering”, Vol.12, 730 – 740, 1966.
Kidnay, A. J., Hiza, M. J., “Physical Adsorption in Cryogenic Engineering Cryogenics”, Vol.10, 271 – 277, 1970.
Kitamura, H., Mizumoto, S., “Insertion device”, U.S. patent 10, 798, 811 B2 issued Oct. 6, 2020.
Lebrun, P. H., Tavian, L., Vandoni, G., Wagner, U., “Cryogenics for Partical Accelerators and Detectors”, CERN LHC/2002-11, 2002.
Marcouille, O., Bechu, N., Berteaud, P., Brunelle, P., Chapuis, L., Herbeaux, C., Lestrade, A., Marlats, J. L., Mary, A., Massal, M., Nadji, A., Tavakoli, K., Valleau, M., Veteran, J., Couprie, M. E., Filhol, J. M., Phys. Rev. ST Accel. Beams 16, 050702, 2013.
New International Dictionary of Refrigeration, 3rd edition, IIR-IIF, Paris, 1975.
Obert, W., “Emissivity measurements of metallic surfaces used in cryogenic applications”, Adv. Cryo. Eng. 27 293, 1982.
Perry’s Chemical Engineers’ Handbook Mc-Graw Hill, Houston, 1997.
Petukhov, B. S., “Heat Transfer and Friction in Turbulent Pipe Flow with Variable Physical Properties”, 1970.
Randall, F. B.,” Cryogenic Systems”, ISBN: 9780195035674, 1985
Ruter, M., Pfluger, J., “DESY-TESLA-FEL-2000-07”, 2000.
Safranek, J., Limborg, C., Terebilo, A., Blomqvist, K. I., Elleaume, P., Nosochkov, Y., Phys. Rev. Accel. Beams 5, 010701, 2002.
Sircar, S., “Regeneration of adsorbents”, V.S Patent No.7784672,1988.
Steven, W., “Helium Cryogenics PLENUM”, 1987.
Strelnikov, N., Trakhtenberg, E., Vasserman, I., Xu, J., Gluskin, E., “Rev. Sci. Instr. 85”, 113303, 2014.
Tsai, H. H., Hsiao, F. Z., Li, H. C., Lin, M. C., Wang, C., Liao, W. R., Lin, T. F., Chiou, W. S., Chang, S. H., Chuang, P. S. D., “Installation and Commissioning of a Cryogen Distribution System for the TPS Project”, Vo. 77, pp. 59-64, 2016.
Tsai, H. H., Hsiao, F. Z., Wang, C., Lin, M. C., Liu, C. P., Chang, M. H., Li, H. C., Lin, T. F., Chiou, W. S., Chang, S. H. “Design of A Liquid-helium Transfer System for the TPS Project”, Proceedings of Particle Accelerator Conference, New York, USA, 2011:1220-1222.
Tsai, H. H., Hsiao, F. Z., Wang, C., Lin, M. C., Liu, C. P., Chang, M. H., Li, H. C., Lin, T. F., Chiou, W. S., Chang, S. H., “Design of A Liquid-helium Transfer System for the TPS Project”, Proceedings of Particle Accelerator Conference, New York, USA, 2011:1220-1222.
Vandoni, G., “Heat transfer”, CERN-2004-008, Geneva 325, 2004.
Ventura, G., Risegari, L. “The Art of Cryogenics, Low-temperature experimental” Elsevier, 2008.
Walker, R. P., “Phys. Rev. ST. Accel. Beams” 16, 010704, 2013.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *