帳號:guest(3.128.95.20)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張晏暠
作者(外文):Chang, Yen-Hao
論文名稱(中文):基於形狀描述子與壓縮感知的操作模態分析全域資料之壓縮
論文名稱(外文):Compression of Full-field Data for Operational Modal Analysis based on Shape Descriptors and Compressed Sensing
指導教授(中文):張禎元
Mottershead, John
指導教授(外文):Chang, Jen-Yuan
Mottershead, John
口試委員(中文):詹子奇
王偉中
宋震國
Christian, William
Zivanovic, Stana
口試委員(外文):Chan, Tzu-Chi
Wang, Wei-Chung
Sung, Cheng-Kuo
Christian, William
Zivanovic, Stana
學位類別:博士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:104033802
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:161
中文關鍵詞:數位影像相依性形狀描述子壓縮感知操作模態分析結構健康監測
外文關鍵詞:Digital Image CorrelationShape DescriptorCompressed SensingOperational Modal AnalysisStructural Health Monitoring
相關次數:
  • 推薦推薦:0
  • 點閱點閱:921
  • 評分評分:*****
  • 下載下載:9
  • 收藏收藏:0
近年來,如何提取有效的資料以及移除冗餘的雜訊逐漸成為研究焦點。對於各種的工程分析而言,資料壓縮是不可或缺的,有效率的壓縮方式將對各種工程研究有助益。數位影像相依性(Digital Image Correlation)演算法系統是一種基於雙數位相機的立體視覺量測系統,該系統已經被廣泛的應用在力學的應變分析上,因為其可以直接量測選取區域之位移場的簡便性。目前,這項量測系統已經逐漸被應用於動態的工程量測上,但正是由於測量儀器是數位像相機而又產生了新的問題。其中最主要的問題就是資料量變成非常龐大,通常會有幾千個資料點的時序資料肇因於高取樣頻率、高空間解析度以及長取樣時間的要求。在本研究中,主要探討如何有效的壓縮立體視覺數位影像相依性系統所量取的位移場圖序列。作為一種非接觸的光學全域量測技術,立體視覺數位影像相依性系統的應用越來越廣泛。本論文中提出應用稀疏表示來處理由立體視覺數位影像相依性系統量測所產生的龐大資料。目標是發展能夠保留位移場圖中的細部資訊以及維持形狀描述子(Shape Descriptor)表示的簡潔性。此研究中提出了兩個有效的資料壓縮方法基於知名的K-SVD演算法以及壓縮感知(Compressed Sensing)技術來算出具有代表性又簡潔的資料表示。
首先,本研究提出一種新的演算法來有效的處理全域的資料,藉由資料本身的特性以及結合形狀描述子與格拉姆-施密特單範正交化(Gram-Schmidt Orthonormalisation),使表示資料的基底函數數量減少,但仍可建立更簡潔的分解。在模擬與實際量測的案例中,資料大小與訊號數量的壓縮比都有明顯提升,顯示了本演算法的有效性。新基底函數的資料表示所重建的位移場圖,符合了指定的相依性係數的閥值條件。
另外,通常在工作結構的監測中,會量測很多組的資料,可能會造成資料傳輸以及儲存的問題,這個問題尤其明顯當量測儀器是數位相機時,也就是立體視覺數位影像相依性系統。一張位移圖有數千個量測點,一組有意義的量測通常包含數千張位移場圖,而通常為了降低雜訊的影響,振動量測又會測量數組的數據,如此大量的資料必須要以有效率的方式處理,以方便之後的遠端重建與分析,尤其是操作模態分析(Operational Modal Analysis)。本研究正是因為此需求而提出結合形狀描述子與壓縮感知的資料壓縮方法,因為只使用壓縮感知技術並不能更有效的壓縮資料。本整合的方法被示範應用於部分可觀測的工業電路板之分析上,用操作模態分析藉由l_1最佳化壓縮與重建位移場圖。壓縮與重建的流程可於該例子中瞭解,而其壓縮效果更勝單獨使用形狀描述子方法,且從操作模態分析結果中,可以驗證壓縮感知重建的資料保留了原始資料的核心資訊。
總結,基底函數更新演算法是一個有效降低用於表示之基底函數數量的工具,並且其產生的基底函數更適合應用於壓縮立體視覺數位影像相依性系統量測的資料上,該演算法能夠由初始基底函數更新,進而找到一組有代表性的形狀基底函數去代表位移場圖。另一方面,整合壓縮感知與形狀描述子的方法提供了一種新的方式去提取量測資料中的核心資訊,這種後處理的技術不只提升了壓縮比,也提供了結構健康監測(Structural Health Monitoring)新的可行性。
The extraction of useful information and removal of redundant noise from data has become a major research topic in recent years. Data compression is necessary for all kinds of analysis, and the demand for efficient compression techniques has gained much attention. Digital image correlation (DIC) is a camera-based, optical measuring system, which has been widely applied in strain analysis because of the convenience of measuring displacement fields by simply selecting a region of interest. Currently, there is interest in applying such methods to engineering structures in dynamics. However, one of the major issues related to the integration of camera-based systems with dynamic measurement is the generation of huge amounts of data, typically extending to many thousands of data points, because of the requirements of high sampling rate, spatial resolution, and long duration of recording. In this study, the problem of data compression of displacement maps from 3D-DIC measurement is addressed. As a non-contact optical full-field measurement technique, 3D-DIC displacement measurement is becoming more widely applied to various kinds of dynamic issues. The research presented in this thesis attempts to apply the algorithms of sparse representation to deal with the huge amount of data acquired from 3D-DIC measurement. It aims to develop methods that have the capability of preserving nuances of displacement measurement and retaining the compactness of shape descriptor (SD) decomposition. Accordingly, two useful compression methods based upon the well-known K-SVD algorithm and compressed sensing (CS) method are developed for the purpose of a succinct and representative decomposition of displacement maps from 3D-DIC measurement.
Firstly, a new algorithm is presented that addresses the need for efficiency in full-field data processing. By making use of the data itself and combining the concept of SD representation with Gram-Schmidt orthonormalisation (GSO), the number of basis functions used to represent the data can be reduced and a concise decomposition established. In both simulated and experimental cases, the compression ratios for data size and number of signals used in operational modal analysis are substantially diminished, thereby demonstrating the effectiveness of the proposed algorithm. A reduced number of new basis functions is determined for the representation of data under the condition that the reconstructed displacement map reproduces the raw measured data to within a chosen threshold of correlation coefficient.
Secondly, the monitoring of an operating structure usually dealing with multiple set of data, which could pose an issue for transmission or storage and is particularly important when data acquisition is implemented with cameras, such as 3D-DIC system. Single images regularly extend to tens or even hundreds of thousands of data points and many thousands of images may be required for a single set of vibration tests. Such data must be handled efficiently for later remote reconstruction and analysis, typically OMA. It is this requirement that is addressed and solved by the integrated SD-CS method because CS alone is found to be prohibitively expensive for the processing of many thousands of camera images. Data reduction by a combination of SD decomposition and CS is applied to an industrial printed circuit board and reconstructed for OMA by l_1 optimisation. This procedure is demonstrated on industrial DIC data from a partially observed printed circuit board and further significant compression, which is beyond the reduction effect provided by SD method alone, is achieved and OMA is carried out successfully on CS-recovered data.
In summary, the basis-updating algorithm is a powerful tool for the adaptation of kernel functions to the data set collected by 3D-DIC displacement measurement system. The algorithm is capable of finding a representative set of shape descriptors for displacement maps from an initial basis. On the other hand, the integration of CS theory and SD method offers a new way to extract the core information from the measured data. This post-processing technique not only improves the compression ratio but also provides the possibility of structural health monitoring.
Abstract I
摘要 IV
Acknowledgement VI
Contents VII
Nomenclature XI
Acronyms XV
List of Figures XVII
List of Tables XXI
1 Introduction 1
1.1 Problem overview 1
1.2 Objective of the study 1
1.3 DIC method 2
1.4 Operational modal analysis (OMA) 3
1.5 Full-field shape-descriptor method 4
1.6 Compressed sensing 5
1.7 Outline of the thesis 5
1.8 Contribution by the author 7
2 Literature Review 10
2.1 Digital image correlation (DIC) 11
2.2 Operational modal analysis (OMA) 14
2.2.1 Time-domain methods 14
2.2.2 Frequency-domain methods 15
2.3 Shape descriptors (SD) 17
2.4 Compressed sensing (CS) 18
2.5 Closure 20
3 Digital Image Correlation 22
3.1 2D and 3D DIC system 22
3.2 The geometric optics behind 3D DIC system 24
3.3 Local and global DIC algorithms 27
3.4 The local correlation algorithm 28
3.5 Closure 30
4 Operational Modal Analysis 32
4.1 Linear equation of motion (EoM) 32
4.2 Continuous-time deterministic state-space model 32
4.3 Discrete-time stochastic state-space model 33
4.4 OMA methods 34
4.4.1 Time-domain method 35
4.4.2 Frequency-domain method 39
4.4.2.A Frequency-domain decomposition (FDD) method 39
4.4.2.B Poly-reference least square complex frequency-domain (P-LSCF) method 41
4.4.2.C Bayesian method 44
4.5 Closure 47
5 Decomposition of Images by using Shape Descriptors 49
5.1 Image decomposition and reconstruction 50
5.2 Geometric moment descriptor 51
5.3 Tchebichef moment descriptor 54
5.3.1 Theory 54
5.3.2 Example 57
5.4 Zernike moment descriptor 61
5.4.1 Theory 61
5.4.2 Example 62
5.5 Adaptive geometric moment descriptor (AGMD) 67
5.5.1 Theory 67
5.5.2 Example 71
5.6 Closure 76
6 Basis-Updating Algorithm 78
6.1 Basis learning & sparse representation 79
6.2 K-means & K-SVD 81
6.2.1 K-means algorithm 81
6.2.2 K-SVD algorithm 83
6.3 Basis-updating algorithm 85
6.4 Analysis procedure 87
6.5 Case Studies 88
6.5.1 Simulated data 88
6.5.2 Experimental PCB circuit board 90
6.6 Result and discussion 91
6.6.1 Simulated data 91
6.6.2 Printed circuit board (PCB) 96
6.7 Closure 103
7 Compressed Sensing 105
7.1 Compressed sensing theory 105
7.2 Experimental case study 110
7.3 CS procedure 111
7.4 CS of a single image 114
7.5 CS for OMA 118
7.6 Closure 122
8 Conclusion and Future Studies 124
8.1 Conclusions 124
8.2 Future studies 126
Appendices 129
A. Basic Mathematical Definitions 129
A.1 Gram-Schmidt orthonormalisation (GSO) 129
A.2 The Norm of a Vector (or Matrix) 130
A.2.1 l_p vector norm 130
A.2.2 l_0 vector norm 131
A.2.3 Frobenius matrix norm 131
B. Verification of OMA methods 133
C. Conference Paper C1 143
D. Journal Paper J1 145
E. Journal Paper J2 147
Reference 149
[1] F. Ubertini, G. Comanducci, N. Cavalagli. “Vibration-based structural health monitoring of a historic belltower using output-only measurements and multivariate statistical analysis,” Structural Health Monitoring 15 (4), pp. 438–457, 2016.
[2] W. Weijtjens, T. Verbelen, G. De Sitter, C. Devriendt. “Foundation structural health monitoring of an offshore wind turbine—A full-scale case study,” Struct. Heal. Monit., 15, 389–402, 2015.
[3] G. Hackmann, W. Guo, G. Yan, Z. Sun, C. Lu, S. Dyke. “Cyber-physical codesign of distributed structural health monitoring with wireless sensor networks,” IEEE Trans. Parallel Distrib. Syst. 25 (1), pp. 63–72, 2014.
[4] M. Y. Bhuiyan, J. Bao, B. Poddar, V. Giurgiutiu. “Toward identifying crack-length-related resonances in acoustic emission waveforms for structural health monitoring applications.” Structural Health Monitoring, 2017.
[5] D. Feng, M. Q. Feng. “Experimental validation of cost-effective vision-based structural health monitoring.” Mechanical Systems and Signal Processing, 88, pp. 199-211, 2017.
[6] T. Khuc, F. N. Catbas, “Completely contactless structural health monitoring of real-life structures using cameras and computer vision,” Struct. Control Heal. Monit., 2016.
[7] Y. Yang, C. Dorn, T. Mancini, Z. Talken, G. Kenyon, C. Farrar, D. Mascareñas. “Spatiotemporal video‐domain high‐fidelity simulation and realistic visualization of full‐field dynamic responses of structures by a combination of high‐spatial‐resolution modal model and video motion manipulations,” Struct Control Health Monit., 2018.
[8] N. Wadhwa, M. Rubinstein, F. Durand, W. T. Freeman. “Phase-based video motion processing.” ACM Transactions on Graphics 32, 4, 80, 2013.
[9] Y. Yang, S. Nagarajaiah. “Robust data transmission and recovery of images by compressed sensing for structural health diagnosis,” Structural Control and Health Monitoring, 2016.
[10] D. Donoho. “Compressed sensing,” IEEE Trans. Inform. Theory 52 (4), pp.1289–1306, 2016.
[11] P. Cawley. “Structural health monitoring: Closing the gap between research and industrial deploymen,”. Int. J. Struct. Health Monit., 2018.
[12] J. P. Amezquita-Sanchez, H. Adeli. “Signal Processing Techniques for Vibration-Based Health Monitoring of Smart Structures,” Archives of Computational Methods in Engineering, pp. 1–15, 2014.
[13] W. H. Peters, W. F. Ranson. “Digital imaging techniques in experimental stress analysis.” Optical Engineering 21(3), pp. 427-431, 1982.
[14] M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson, S. R. McNeill. “Determination of displacements using an improved digital correlation method,” Image and Vision Computing, Volume 1, Issue 3, pp. 133-139, 1983.
[15] W. H. Peters, W. F. Ranson, M. A. Sutton, T. C. Chu, J. Anderson. “Applications of Digital Correlation Methods to Rigid Body Mechanics,” Opt. Eng., 22 (6), 1983.
[16] H. Bruck, S. McNeill, M. Sutton, W. Peters. “Digital image correlation using Newton-Raphson method of partial differential correction,” Exp. Mech., 29, pp. 261–267, 1989.
[17] M. A. Sutton, J. Orteu, H. W. Schreier. “Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications,” Springer, 2009.
[18] W. N. Sharpe. “Handbook of experimental solid mechanics,” Springer, chap. 18-20, 2008.
[19] T. J. Beberniss, D. A. Ehrhardt. “High-speed 3D digital image correlation vibration measurement: Recent advancements and noted limitations,” Mechanical Systems and Signal Processing, 86, pp. 35-48, 2017.
[20] P. Poozesh, A. Sarrafi, Z. Mao, P. Avitabile, C. Niezrecki. “Feasibility of extracting operating shapes using phase-based motion magnification technique and stereo-photogrammetry,” Journal of Sound and Vibration, 407, pp. 350-366, 2017.
[21] A.J. Molina-Viedma, L. Felipe-Sesé, E. López-Alba, F.A. Díaz. “3D shapes characterization using phase-based motion magnification in large structures using stereoscopic DIC,” Mechanical Systems and Signal Processing, 108, pp. 140-155, 2018.
[22] A.J. Molina-Viedma, L. Felipe-Sesé, E. López-Alba, F.A. Díaz. “High frequency mode shapes characterization using Digital Image Correlation and phase-based motion magnification,” Mechanical Systems and Signal Processing, 102, pp. 245-261, 2018.
[23] P. Poozesh, J. Baqersad, C. Niezrecki, P. Avitabile, E. Harvey, R. Yarala. “Large-area photogrammetry based testing of wind turbine blades.” Mechanical Systems and Signal Processing, 86, pp. 98-115, 2017.
[24] K. Patil, V. Srivastava, J. Baqersad. “A multi-view optical technique to obtain mode shapes of structures.” Measurement, 122, pp. 358-367, 2018.
[25] J. Javh, J. Slavič, M. Boltežar. “The subpixel resolution of optical-flow-based modal analysis,” Mechanical Systems and Signal Processing, 88, pp. 89-99, 2017.
[26] L. Yu, B. Pan. “Color Stereo-Digital Image Correlation Method Using a Single 3CCD Color Camera,” Experimental Mechanics, 51 (4), pp. 649–657, 2017.
[27] L. Yu, B. Pan. “Single-camera high-speed stereo-digital image correlation for full-field vibration measurement,” Mechanical Systems and Signal Processing 94, pp. 374-383, 2017.
[28] L. Yu, B. Pan. “Full-frame, high-speed 3D shape and deformation measurements using stereo-digital image correlation and a single color high-speed camera,” Optics and Lasers in Engineering 95, pp. 17-25, 2017
[29] Y. Chi, L. Yu, B. Pan. “Low-cost, portable, robust and high-resolution single-camera stereo-DIC system and its application in hightemperature deformation measurements,” Optics and Lasers in Engineering. 104, pp.141-148, 2018.
[30] B. Pan, L. Yu, Q. B. Zhang. “Review of single-camera stereo-digital image correlation techniques for full-field 3D shape and deformation measurement,” Sci China Technol Sci, 2017.
[31] P. J. Sousa, F. Barros, P. J. Tavares, P. M. G. Moreira. “Displacement measurement and shape acquisition of an RC helicopter blade using digital image correlation,” Procedia Structural Integrity, 5, pp. 1253-1259, 2017.
[32] R. Perez, G. Bartram, T. Berniss, R. Wiebe, S. M. Spottswood. “Calibration of aero-structural reduced order models using full-field experimental measurements,” Mechanical Systems and Signal Processing, 86, pp. 49-65, 2017.
[33] M. Flores, D. Mollenhauer, V. Runatunga, T. Beberniss, D. Rapling, M. Pankow. “High-speed 3D digital image correlation of low-velocity impacts on composite plates,” Composites Part B, 131, pp. 153-164, 2017.
[34] F. Hild, S. Roux. “Comparison of local and global approaches to digital image correlation,” Exp. Mech. 52, 1503–1519, 2012.
[35] D. Wang, F. A. DiazDelaO, W. Wang, J. E. Mottershead. “Full-field digital image correlation with Kriging regression,” Optics and Lasers in Engineering, 67, pp. 105–115, 2015.
[36] D. Wang, F. A. DiazDelaO, W. Wang, X. Lin, E. A. Patterson, J. E. Mottershead. “Uncertainty quantification in DIC with kriging regression,” Optics and Lasers in Engineering, 78, pp. 182 – 195, 2016.
[37] Y. L. Dong, B. Pan. “A Review of Speckle Pattern Fabrication and Assessment for Digital Image Correlation,” Exp. Mech., 57, pp. 1161–1181, 2017.
[38] B. Pan, B. Wang. “A flexible and accurate digital volume correlation method applicable to high-resolution volumetric images,” Meas. Sci. Technol. 28, 105007, 2017.
[39] B. Wang, B. Pan. “Incremental digital volume correlation method with nearest subvolume offset: an accurate and simple approach for large deformation measurement,” Adv. Eng. Software, 116, pp. 80-88, 2018.
[40] B. Pan. “Thermal error analysis and compensation for digital image/volume correlation,” Opt. Lasers Eng., 101, pp. 1–15, 2018.
[41] A. Buljac, C. Jailin, A. Mendoza, J. Neggers, T. Taillandier-Thomas, A. Bouterf, B. Smaniotto, F. Hild, and S. Roux. “Digital volume correlation: Review of progress and challenges,” Experimental Mechanics, 58(5), pp. 661–708, 2018.
[42] B. Peeters, G. De Roeck. “Referenced-based stochastic subspace identification for output-only modal analysis,” Mechanical Systems and Signal Processing 13(6), pp. 855-878, 1999.
[43] S. R. Ibrahim. “Random decrement technique for modal identification of structures,” The AIAA Journal of Spacecraft and Rockets. 14(11), 1977.
[44] S. R. Ibrahim, E. C. Mikulcik. “A method for direct identification of vibration parameters from the free response,” The Shock and Vibration Bulletin. 47(4), pp. 183–98, 1977.
[45] D. M. Siringoringo, Y. Fujino. “System identification of suspension bridge from ambient vibration response,” Eng. Struct. 30 (2), pp. 462–477, 2008.
[46] F. Poncelet, G. Kerschen, J.-C. Golinval, D. Verhelst. “Output-only modal analysis using blind source separation techniques,” Mechanical Systems and Signal Processing, Volume 21, pp. 2335-2358, 2007.
[47] E. Reynders, J. Houbrechts, G. De Roeck. “Fully automated (operational) modal analysis,” Mech Syst. Signal Process 29, pp.228–250, 2012.
[48] R. Brincker, P. Andersen, N.-J. Jacobsen. “Automated frequency domain decomposition for operational modal analysis,” In Proceedings of the 25th International Modal Analysis Conference, Orlando, FL, February 2007.
[49] R. Brincker, L. Zhang, P. Andersen. “Modal identification from ambient responses using frequency domain decomposition,” Proceedings of the IMAC 18, International Modal Analysis Conference, pp. 625-630, 2000.
[50] C. Devriendt, P. Guillaume. “The use of transmissibility measurements in output-only modal analysis,” Mechanical Systems and Signal Processing 21 (7), pp. 2689–2696, 2007.
[51] W. J. Yan, W. X. Ren. “An enhanced power spectral density transmissibility (EPSDT) approach for operational modal analysis: theoretical and experimental investigation,” Eng. Struct. 102, pp. 108–119, 2015.
[52] B. Peeters, H. Van Der Auweraer. “PolyMax: a revolution in operational modal analysis,” Proceedings of the IOMAC, International Operational Modal Analysis Conference, Copenhagen, Denmark, 2005.
[53] S. K. Au. “Fast Bayesian FFT Method for Ambient Modal Identification with Separated Modes,” J. Eng. Mech., 137(3), pp. 214-226, 2011.
[54] S. K. Au. “Fast Bayesian ambient modal identification in the frequency domain, Part I: Posterior most probable value,” Mechanical Systems and Signal Processing, 26, pp. 60-75, 2012a.
[55] S. K. Au. “Fast Bayesian ambient modal identification in the frequency domain, Part II: Posterior uncertainty,” Mechanical Systems and Signal Processing, 26, pp. 76-90, 2012b.
[56] G. Oliveira, F. Magalhaes, A. Cunha, E. Caetano. “Continuous dynamic monitoring of an onshore wind turbine,” Engineering Structures, 164, pp. 22-39, 2018.
[57] G.-W. Chen, P. Omenzetter, S. Beskhyroun. “Operational modal analysis of an eleven-span concrete bridge subjected to weak ambient excitations,” Engineering Structures, 151, pp. 839-860, 2017..
[58] A. De Vivo, C. Brutti, J. L. Leofanti. “Modal shape identification of large structures exposed to wing excitation by operational modal analysis technique,” Mechanical Systems and Signal Processing, 39, pp. 195-206, 2013.
[59] B. Chomette, J. L. Carrou. “Operational modal analysis applied to the concert harp,” Mechanical Systems and Signal Processing, 56-57, pp. 81-91, 2015.
[60] E. Reynders, K. Mayes, G. Lombaert, G. De Roeck. “Uncertainty quantification in operational modal analysis with stochastic subspace identification: validation and applications,” Mechanical Systems and Signal Processing, 66-67, pp. 13-30, 2016.
[61] Y.-C. Zhu, S.-K. Au. “Bayesian operational modal analysis with asynchronous data, part I: most probable value,” Mechanical Systems and Signal Processing, 98, pp. 652-666, 2018.
[62] Y.-C. Zhu, S.-K. Au. “Bayesian operational modal analysis with asynchronous data, part II: posterior uncertainty,” Mechanical Systems and Signal Processing, 98, pp. 920-935, 2018.
[63] Y.-C. Zhu, Y-L. Xie, S.-K. Au. “Bayesian operational modal analysis with asynchronous data, part 1: most probable value,” Engineering Structures, 165, pp. 50-62, 2018.
[64] S. Rizo-Patron, J. Sirohi. “Operational Modal Analysis of a Helicopter Rotor Blade Using Digital Image Correlation,” Experimental Mechcanics, 57, pp. 367-375, 2017.
[65] Y.-H. Chang, W. Wang, E. A. Patterson, J.-Y. Chang, and J. E. Mottershead. “Output-only full-field modal testing,” X International Conference on Structural Dynamics, EURODYN. Procedia Engineering 199, pp. 423–428, 2017.
[66] H. Leclerc, J.-N. Périé, S. Roux, F. Hild. “Integrated digital image correlation for the identification of mechanical properties,” Computer Vision/Computer Graphics Collaboration Techniques 5496, pp. 161–171, 2009.
[67] W. Wang, J. E. Mottershead, C. Mares. “Vibration mode shape recognition using image processing,” Journal of Sound and Vibration 326 (3–5), pp. 909–938, 2009a.
[68] W. Wang, J. E. Mottershead, C. Mares. “Mode-shape recognition and finite element model updating using the Zernike moment descriptor,” Mechanical Systems and Signal Processing 23 (7), pp. 2088–2112, 2009b..
[69] W. Wang, J. E. Mottershead, A. Ihle, T. Siebert, H. R. Schubach. “Finite element model updating from full-field vibration measurement using digital image correlation,” Journal of Sound and Vibration 330 (8), pp. 1599–1620, 2011a..
[70] W. Wang, J. E. Mottershead, C. M. Sebastian, E. A. Patterson. “Shape features and finite element model updating from full-field strain data,” Int. J. Solids Struct. 48 (11–12), pp. 1644–1657, 2011b..
[71] W. Wang, J. E. Mottershead, C. M. Sebastian. “Image analysis for full-field displacement/strain data: methods and applications,” Appl Mech Mater, 70, pp. 39–44, 2011c.
[72] A. S. Patki, E. A. Patterson. “Decomposing strain maps using Fourier-Zernike shape descriptors,” Exp. Mech., 52(8), pp. 1137-1149, 2012.
[73] M. K. Hu. “Visual pattern recognition by moment invariants,” IRE Transactions on Information Theory IT-8, pp. 179–187, 1962.
[74] F. Zernike. “Beugungstheorie des Schneidenverfahrens und Seiner Verbesserten Form, der Phasenkontrastmethode,” Physica 1, 1934.
[75] R. Mukundan, S. H. Ong, P. A. Lee. “Image analysis by Tchebichef moments,” IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society 10 (9), pp. 1357–1364, 2001.
[76] P. T. Yap, R. Paramesran, S. H. Ong. “Image analysis by Krawtchouk moments,” IEEE Transactions on Image Processing 12(11), pp. 1367–1377, 2003.
[77] I. Daubechies. “Ten Lectures on Wavelets”, Society for Industrial and Applied Mathematics, 1992..
[78] W. Wang, J. E. Mottershead, T. Siebert, A. Pipino. “Frequency response functions of shape features from full-field vibration measurements using digital image correlation,” Mech. Sys. Sig. Proc., 28, pp. 333-347, 2012.
[79] M. Desbrun, M. Meyer, P. Alliez. “Intrinsic parameterizations of surface meshes,” Comput. Graph. Forum 21 (3), pp. 209–218, 2002.
[80] U. Pinkall, K. Polthier. “Computing discrete minimal surfaces and their conjugates,” Exp. Math. 2 (1), pp. 15–36, 1993.
[81] W. Wang, D. Wang, J. E. Mottershead, G. Lampeas, “Identification of Composite Delamination Using the Krawtchouk Moment Descriptor,” Key Engineering Materials, Vols. 569-570, pp. 33-40, 2013.
[82] R. L. Burguete, G. Lampeas, J. E. Mottershead, E. A. Patterson, A. Pipino, T. Siebert, W. Wang. “Analysis of displacement fields from a high speed impact using shape descriptors,” J. Strain Analysis, 49(4), pp. 212-223, 2014.
[83] E. Candès, J. Romberg, T. Tao. “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inform. Theory, vol. 52, no. 2, pp. 489–509, Feb. 2006.
[84] M. Lustig, D. L. Donoho, J. M. Santos, J. M. Pauly. “Compressed sensing MRI,” IEEE Signal Process. Mag., 25, pp. 72–82, 2008.
[85] J. W. Sanders, H. Song, S. J. Frank, T. Bathala, A. M. Venkatesan, M.Anscher, C. Tang, T. L. Bruno, W. Wei, J. Ma. “Parallel imaging compressed sensing for accelerated imaging and improved signal-to-noise ratio in MRI-based postimplant dosimetry of prostate brachytherapy,” American Brachytherapy Society, 2018.
[86] J. H. Yoon, S. M. Lee, H.-J. Kang, E. Weiland, E. Raithel, Y. Son, B. Kiefer, J. M. Lee. “Clinical feasibility of 3-dimensional magnetic resonance cholangiopancreatography using compressed sensing: comparison of image quality and diagnostic performance,” Invest Radiol., 52, pp. 612–619, 2017.
[87] Z. Lai, X. Qu, Y. Liu, D. Guo, J. Ye, Z. Zhan, Z. Chen. “Image reconstruction of compressed sensing MRI using graph-based redundant wavelet transform,” Medical Image Analysis 27, pp. 93-104, 2016.
[88] S. Arridge, P. Beard, M. Betcke, B. Cox, N. Huynh, F. Lucka, O. Ogunlade, E. Zhang. “Accelerated high-resolution photoacoustic tomography via compressed sensing,” Phys. Med. Biol. 61, pp. 8908-8940, 2016.
[89] D. Gangopadhyay, E. G. Allstot, A. M. R. Dixon, K. Natarajan, S. Gupta, D. J. Allstot. “Compressed Sensing Analog Front-End for Bio-Sensor Applications,” IEEE journal of solid-state circuits, vol. 49. No. 2, pp. 426-438, 2014.
[90] D. Craven, B. McGinley, L. Kilmartin, M. Glavin, E. Jones. “Compressed sensing for bioelectric signals: a review,” Biomedical and Health Informatics, IEEE Journal of, vol. 19, no. 2, pp. 529–540, 2015.
[91] S. Felix, R. Bolzern, M. Battaglia. “A compressed sensing-based image reconstruction algorithm for solar flare x-ray observations,” The Astrophysical Journal, 849, 10, 2017.
[92] C. S. Oxvig, T. Arildsen, T. Larsen. “Structure assisted compressed sensing reconstruction of undersampled AFM images,” Ultramicroscopy, vol. 172, pp. 1–9, Jan. 2017.
[93] J. P. Dumas, M. A. Lodhi, W. U. Bajwa, M. C. P. Rutgers. “A compressed sensing approach for resolution improvement in fiber-bundle based endomicroscopy,” Endoscopic Microscopy, 2018.
[94] F. Ning, F. Pan, C. Zhang, Y. Liu, X. Li, J. Wei. “A highly efficient compressed sensing algorithm for acoutstic imaging in low signal-to-noise ratio environments,” MSSP, 112, pp. 113-128, 2018.
[95] X. Yuan, R. Haimi-Cohen. “Image Compression Based on Compressive Sensing, End-to-End Comparison with JPEG,” 2017.
[96] L. C. Potter, E. Ertin, J. T. Parker, M. Cetin. “Sparsity and compressed sensing in radar imaging,” Proc. IEEE 98(6), pp. 1006–1020, 2010.
[97] Y. Yang, S. Nagarajaiah. “Output-only modal identification by compressed sensing: Non-uniform low-rate random sampling.” MSSP 56-57, pp. 15-34, 2015.
[98] S. Qin, J. Guo, C Zhu. “Sparse component analysis using time-frequency representations for operational modal analysis,” Sensors, 15, pp. 6497-6519, 2015.
[99] J.Y. Park, M.B. Wakin, A.C. Gilbert. “Modal analysis with compressive measurement,” IEEE Transactions on Signal Processing, 62(7), pp. 1655-1670, 2014.
[100] M. Rani, S. Dhok, R. Deshmukh. ‘‘A systematic review of compressive sensing: Concepts, implementations and applications,’’ IEEE Access, vol. 6, pp. 4875–4894, 2018.
[101] E. J. Candes, M. B. Wakin. “An introduction to compressive sampling,” IEEE Signal Proc. Mag., vol. 25, no. 2, pp. 21–30, Mar. 2008.
[102] Y. Niu, H. Wang, S. B. Park. “A general strategy of in-situ warpage characterization for solder attached packages with digital image correlation method,” Optics and Lasers in Engineering, Volume 93, pp. 9-18, 2017.
[103] A. W. Mello, A. Nicolas, M. D. Sangid. “Fatigue strain mapping via digital image correlation for Ni-based superalloys: the role of thermal activation on cube slip,” Materials Science & Engineering. Volume 695, pp. 332-341, 2017.
[104] R. Huňady, M. Hagara. “A new procedure of modal parameter estimation for high-speed digital image correlation,” Volume 93, pp. 66-79, 2017.
[105] P. Cheng, M. Sutton, H. Schreier, S. McNeill. “Full-field speckle pattern image correlation with B-Spline deformation function,” Experimental Mechanics, 42, pp. 344-352, 2002.
[106] Y. Sun, J. H. L. Pang, C. K. Wong, F. Su. “Finite element formulation for a digital image correlation method,” Applied Optics, 44, pp. 7357-7363, 2005.
[107] F. Magalhães, A. Cunha. “Explaining operational modal analysis with data from an arch bridge,” Mech. Syst. Signal Process. 25 (5), pp. 1431–1450, 2011.
[108] J.-N. Juang. “Applied System Identification,” Prentice Hall, Englewood Cliffs, NJ, USA, 1994.
[109] B. Shen, W. Hu, Y. Zhang, Y. Zhang. “Image inpainting via sparse representation,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, pp. 697–700, 2009.
[110] J. Yang, J. Wright, T. S. Huang, Y. Ma. “Image super-resolution via sparse representation,” TIP 19(11), pp. 2861–2873, 2010.
[111] M. Elad, M. Aharon. “Image denoising via sparse and redundant representations over learned dictionaries,” IEEE Transaction on Image Processing, 2006.
[112] M. Aharon, M. Elad, A. M. Bruckstein. “The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representation,” IEEE Transactions on Signal Processing 54, pp. 4311–4322, 2006.
[113] Y.-H. Chang, W. Wang, T. Siebert, J.-Y. Chang, J. E. Mottershead. “Basis-updating for data compression of displacement maps from dynamic DIC measurements,” Mechanical Systems and Signal Processing 115, pp. 405–417, 2019.
[114] E. Candès, J. Romberg. “ℓ1 -MAGIC: Recovery of sparse signals via convex programming,” California Inst. Technol., Pasadena, CA, Tech. Rep., Oct. 2005.
[115] W. Cheney, D. R. Kincaid. “Linear algebra: Theory and applications.” pp. 544–550, 2009.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *