帳號:guest(3.148.117.177)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):安拉維
作者(外文):Ravi, anandrao mavidanam
論文名稱(中文):利用微液滴系統及介電泳方式進行粒子分裝之研究
論文名稱(外文):Particle encapsulation and sorting using dielectrophoresis in droplet microfludics
指導教授(中文):陳致真
指導教授(外文):Chen, Chih-chen
口試委員(中文):許佳賢
吳嘉哲
口試委員(外文):Hsu, Chia-Hsien
Wu, Joseph
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:104033710
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:75
中文關鍵詞:细胞分選液滴微流體细胞分選液滴集合
外文關鍵詞:Cell sortingDean flowdroplet sortingcell sortingthree dimensional electric field
相關次數:
  • 推薦推薦:0
  • 點閱點閱:322
  • 評分評分:*****
  • 下載下載:10
  • 收藏收藏:0
液滴微流體是個可以對微粒進行混和、分選的高通量平台。液低分選可分離目標微粒並研究其行為,並可應用於藥物篩選。當含有多顆細胞或不含細胞的液滴需被包覆進入微珠時,精準的作動以及自動分選就顯得至關重要。因此,我們設計出一個微流裝置,可以精準的對單一顆微粒進行包覆並可快速的進行分選。
這篇論文中,我們設計出一個帶有三維電極的微流體裝置,以用於高通量液珠分選。使用狄恩流(Dean Flow)以弧狀流道及依慣性排序對單顆細胞進行包覆以產出液珠。液珠分選分為兩個階段,包含將液株收集進軟管以及將液珠注入電場之中。
第一個晶片在控制液珠大小的情況之下,有80%可對單一細胞或是微珠進行包覆,這些液珠會被收集進入鐵氟龍管中。第二個晶片則可產生電場,讓不同的液珠如PBS液珠、蔗糖液珠及含有微珠或是細胞的液珠產生偏移,最終被推送到不同的位置。
以20千赫茲/200伏特產生之電場致使PBS液珠偏移,當流速為2.6 µl/min時,液珠距管壁 260 µm,最大液珠偏移為61.19 µm ; 當流速為3.6 µl/min時,液珠距離管壁180 µm,最大液珠偏移為49.22 µm。以蔗糖製成的液珠部分,
當流速為2.6 µl/min時,其在Y軸向上的偏移量為 180 µm,最大液珠偏移為11.24 µm ; 當流速為3.6 µl/min時,液珠距管壁 172.12 µm。實驗結果證實此裝置確實可以分選不同的液珠。並在低包覆失敗的狀態下,成功的以液珠包覆單顆細胞並進行分選。實驗結果證明了此包含液珠收集及在注入功能之裝置的有效性。
Droplet microfluidics is a high-throughput platform with ease of sorting, merging and compartmentalizing of micro particles. Droplet sorting provides us a platform to isolate and study behavior of the target particles for applications like drug screening. In droplet microfluidics precise manipulation and self-sorting of droplets has been a key issue along with large number of empty and multi-cell droplets when encapsulated with micro particles like cells/bead. Hence, we developed a microfluidic device with precise droplet manipulation of only one micro particle encapsulation and rapid sorting of droplets.
In this thesis, we present a microfluidic device with three dimensional electrodes on it for high-throughput spontaneous sorting of droplets. Curved micro-channels with inertial ordering of particles i.e. Dean Flow aids for single cell encapsulation with the precise match of periodicity of the cell flow with the droplet generation. The sorting of varied population of droplets is achieved in two stages i.e. droplets collection in flexible tubes and droplets re-injection in the dense electric field. The first chip encapsulated exactly one cell/bead in droplets with high probability rate of 80% along with control on size of droplets and collection of droplets in a long circular Teflon tube, while the second chip generated dense electric field and deflected different populations of droplets like PBS droplets, sucrose droplets and droplets with cells/beads to different y positions. The maximum deviation of PBS droplets obtained is 61.19 µm at the flow rate of 2.6 µl/min and 49.22 µm at the flow rate of 3.5 µl/min for a frequency of 20Khz. Post deflection the maximum deflection y-positions of PBS droplets obtained is 260 µm at the flow rate of 2.6 µl/min and 180 µm at the flow rate of 3.6 µl/min. The maximum deviation of sucrose droplets obtained is 11.24 µm at the flow rate of 2.6 µl/min and the maximum deflected y-position is 172.12 µm at the flow rate of 3.6 µl/min for a frequency of 20Khz. Experiment results confirmed potential of the device to sort variety of droplets. Successful encapsulation of injected cell sample into droplets with exactly one cell, with minimal number of empty droplets, and sorting is demonstrated. The experimental results indicated the efficacy of this sorting device using droplet collection and re-injection method.
Abstract i.
Content ii
List of Figures iv
List of Tables vii
Chapter 1. Introduction 1
1.1 Background 1
1.2 Motivation 2
Chapter 2. Literature Review 4
2.1 Droplet Formation 5
2.1.1 T- junction 5
2.1.2 Flow Focusing 6
2.2 Sorting 7
2.2.1 Geometric 7
2.2.2 Magnetic 9
2.2.3 Dielectrophoretic 10
2.3 Three dimensional Electrode………………………......................12
2.3.1 Fluidic Electrode 11
2.3.2 Gel Electrode 12
Chapter 3. Theory of Dielectrophoresis 14
Chapter 4. Chip Design 16
4.1 Chip…………………………………………………………………..19
4.1.1 Dean flow 17
4.1.2 Different designs for droplet generation……………..........18
4.2 Sheath focusing …………………………………………………….21
4.3 Electrdoe design…………………………………………………….22
Chapter 5. Fabrication 24
5.1 Standard Lithography 25
5.1.1 Cleaning 27
5.1.2 Spin-coating 27
5.1.3 Pre-baking 27
5.1.4 Exposing 28
5.1.5 Post-baking 29
5.1.6 Development of Alignment Mark 29
5.1.7 Development 29
5.1.8 Post-exposing 29
5.2 Soft Lithography 30
5.3 PDMS Membrane 31
5.3.1 Spin Perforation30 32
5.4 Oxygen Plasma Bonding 33
5.5 Three-dimensional electrode 34
Chapter 6. Simulation Results 35
6.1 CM Factor 36
6.2 Electric Field 37

Chapter 7. Experiment Results and Discussion 43
7.1 Droplet Science.
7.1.1 Dean focusing and droplet formation 43.
7.1.2 Droplet formation and patterns…………………………….45
7.1.3 Droplet collection and techniques………………………….46
7.1.4 Droplet re-injection and sheath focussing…………………49
7.1.5 Conductivity tests…………………………………………….51
7.1.5 Cell culture and morphology……………………………….53
7.2 Sorting experiments and electric field………………………...53
7.2.1 Droplets deviation and analysis……………………………..55
7.2.2 Comparison of deviation lysis……………………………….65
7.2.3 Discussion..…………………………………………….…….66
7.3 Image Processing 65.
7.3.1 MTrack 2 66.
Chapter 8. Conclusion and Future Work 70.
8.1 Conclusion 70.
8.2 Future work 71.
Reference 72
1 Shields, C. W. t., Reyes, C. D. & Lopez, G. P. Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip 15, 1230-1249, doi:10.1039/c4lc01246a (2015).
2 Kemna, E. W. et al. High-yield cell ordering and deterministic cell-in-droplet encapsulation using Dean flow in a curved microchannel. Lab Chip 12, 2881-2887, doi:10.1039/c2lc00013j (2012).
3 Lagus, T. P. & Edd, J. F. High throughput single-cell and multiple-cell micro-encapsulation. J Vis Exp, e4096, doi:10.3791/4096 (2012).
4 Clausell-Tormos, J. et al. Droplet-based microfluidic platforms for the encapsulation and screening of Mammalian cells and multicellular organisms. Chem Biol 15, 427-437, doi:10.1016/j.chembiol.2008.04.004 (2008).
5 Nisisako, T., Torii, T. & Higuchi, T. Droplet formation in a microchannel network. Lab Chip 2, 24-26, doi:10.1039/b108740c (2002).
6 Anna, S. L., Bontoux, N. & Stone, H. A. Formation of dispersions using “flow focusing” in microchannels. Applied Physics Letters 82, 364-366, doi:10.1063/1.1537519 (2003).
7 Gossett, D. R. et al. Label-free cell separation and sorting in microfluidic systems. Anal Bioanal Chem 397, 3249-3267, doi:10.1007/s00216-010-3721-9 (2010).
8 Mazutis, L. & Griffiths, A. D. Preparation of monodisperse emulsions by hydrodynamic size fractionation. Applied Physics Letters 95, 204103, doi:10.1063/1.3250432 (2009).
9 Di Carlo, D., Irimia, D., Tompkins, R. G. & Toner, M. Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc Natl Acad Sci U S A 104, 18892-18897, doi:10.1073/pnas.0704958104 (2007).
10 Al‐Hetlani, E. et al. Sorting and Manipulation of Magnetic Droplets in Continuous Flow. AIP Conference Proceedings 1311, 167-175, doi:10.1063/1.3530008 (2010).
11 Ling, S. H., Lam, Y. C. & Chian, K. S. Continuous cell separation using dielectrophoresis through asymmetric and periodic microelectrode array. Anal Chem 84, 6463-6470, doi:10.1021/ac300079q (2012).
12 Moon, H. S. et al. Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP). Lab Chip 11, 1118-1125, doi:10.1039/c0lc00345j (2011).
13 Kang, Y., Li, D., Kalams, S. A. & Eid, J. E. DC-Dielectrophoretic separation of biological cells by size. Biomed Microdevices 10, 243-249, doi:10.1007/s10544-007-9130-y (2008).
14 Niu, X., Zhang, M., Peng, S., Wen, W. & Sheng, P. Real-time detection, control, and sorting of microfluidic droplets. Biomicrofluidics 1, 44101, doi:10.1063/1.2795392 (2007).
15 Piacentini, N., Mernier, G., Tornay, R. & Renaud, P. Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation. Biomicrofluidics 5, 34122-341228, doi:10.1063/1.3640045 (2011).
16 Qian, C. et al. Dielectrophoresis for bioparticle manipulation. Int J Mol Sci 15, 18281-18309, doi:10.3390/ijms151018281 (2014).
17 Martinez-Duarte, R. Microfabrication technologies in dielectrophoresis applications--a review. Electrophoresis 33, 3110-3132, doi:10.1002/elps.201200242 (2012).
18 Wang, L. et al. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells. Electrophoresis 30, 782-791, doi:10.1002/elps.200800637 (2009).
19 Rao, L. et al. One-step fabrication of 3D silver paste electrodes into microfluidic devices for enhanced droplet-based cell sorting. AIP Advances 5, 057134, doi:10.1063/1.4921317 (2015).
20 Cheng, I. F., Froude, V. E., Zhu, Y., Chang, H. C. & Chang, H. C. A continuous high-throughput bioparticle sorter based on 3D traveling-wave dielectrophoresis. Lab Chip 9, 3193-3201, doi:10.1039/b910587e (2009).
21 Tahsin Guler, M., Bilican, I., Agan, S. & Elbuken, C. A simple approach for the fabrication of 3D microelectrodes for impedimetric sensing. Journal of Micromechanics and Microengineering 25, 095019, doi:10.1088/0960-1317/25/9/095019 (2015).
22 Shafiee, H., Sano, M. B., Henslee, E. A., Caldwell, J. L. & Davalos, R. V. Selective isolation of live/dead cells using contactless dielectrophoresis (cDEP). Lab Chip 10, 438-445, doi:10.1039/b920590j (2010).
23 Salmanzadeh, A., Elvington, E. S., Roberts, P. C., Schmelz, E. M. & Davalos, R. V. Sphingolipid metabolites modulate dielectric characteristics of cells in a mouse ovarian cancer progression model. Integr Biol (Camb) 5, 843-852, doi:10.1039/c3ib00008g (2013).
24 Salmanzadeh, A. et al. Isolation of prostate tumor initiating cells (TICs) through their dielectrophoretic signature. Lab Chip 12, 182-189, doi:10.1039/c1lc20701f (2012).
25 Demierre, N. et al. Characterization and optimization of liquid electrodes for lateral dielectrophoresis. Lab Chip 7, 355-365, doi:10.1039/b612866a (2007).
26 Bhattacharjee, N., Horowitz, L. F. & Folch, A. Continuous-flow multi-pulse electroporation at low DC voltages by microfluidic flipping of the voltage space topology. Appl Phys Lett 109, 163702, doi:10.1063/1.4963316 (2016).
27 Pethig, R. Review article-dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics 4, doi:10.1063/1.3456626 (2010).
28 Pohl, H. A. The Motion and Precipitation of Suspensoids in Divergent Electric Fields. Journal of Applied Physics 22, 869-871, doi:10.1063/1.1700065 (1951).
29 Cheng, I.-F. Light-Induced Dielectrophoresis for the Applications on Dynamic and Passive Continuous Separation of Microparticles. Nano Communication 19, 38-45 (2012).
30 Silva Santisteban, T., Zengerle, R. & Meier, M. Through-holes, cavities and perforations in polydimethylsiloxane (PDMS) chips. RSC Adv. 4, 48012-48016, doi:10.1039/c4ra09586c (2014).
31 Baret, J. C. Surfactants in droplet-based microfluidics. Lab Chip 12, 422-433, doi:10.1039/c1lc20582j (2012).
32 Wang, S. F. et al. Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins. Biochem Biophys Res Commun 451, 208-214, doi:10.1016/j.bbrc.2014.07.090 (2014).
33 Henry, E. et al. Sorting cells by their dynamical properties. Sci Rep 6, 34375, doi:10.1038/srep34375 (2016).

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *