|
[1] Shady Grove Fertility Center. [2] R.G. Brzyski, and J. Knudtson, Female Internal Genital Organs. Merck Manual, 2015 [3] Dr. Bond, Total Health & Care with A Human Touch. [4] U. Drews, Taschenatlas der Embryologie. 1993: Stuttgart New York Thieme. [5] Infertility Center of St. Louis. [6] Advanced Fertility Center of Chicago [7] Newlife IVF Greece [8] L.I. Barmat, H.C. Liu, S.D. Spandorfer, A. Kowalik, C. Mele, K. Xu, L. Veeck, M. Damario, and Z. Rosenwaks, Autologous endometrial co-culture in patients with repeated failures of implantation after in vitro fertilization-embryo transfer. J Assist Reprod Genet, 1999. 16(3): p. 121-7. [9] C. Deachapunya, and S.M. O'Grady, Epidermal growth factor regulates the transition from basal sodium absorption to anion secretion in cultured endometrial epithelial cells. J Cell Physiol, 2001. 186(2): p. 243-50. [10] F. Dominguez, B. Gadea, A. Mercader, F.J. Esteban, A. Pellicer, and C. Simon, Embryologic outcome and secretome profile of implanted blastocysts obtained after coculture in human endometrial epithelial cells versus the sequential system. Fertil Steril, 2010. 93(3): p. 774-782 e1. [11] H. Kimura, T. Yamamoto, H. Sakai, Y. Sakai, and T. Fujii, An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models. Lab Chip, 2008. 8(5): p. 741-6. [12] J.E. Swain, and G.D. Smith, Advances in embryo culture platforms: novel approaches to improve preimplantation embryo development through modifications of the microenvironment. Hum Reprod Update, 2011. 17(4): p. 541-57. [13] K.S. Kolahi, A. Donjacour, X. Liu, W. Lin, R.K. Simbulan, E. Bloise, E. Maltepe, and P. Rinaudo, Effect of substrate stiffness on early mouse embryo development. PLoS One, 2012. 7(7): p. e41717. [14] D.A. Rappolee, C. Basilico, Y. Patel, and Z. Werb, Expression and function of FGF-4 in peri-implantation development in mouse embryos. Development, 1994. 120(8): p. 2259-69. [15] D.L. Hickman, D.J. Beebe, S.L. Rodriguez-Zas, and M.B. Wheeler, Comparison of static and dynamic medium environments for culturing of pre-implantation mouse embryos. Comp Med, 2002. 52(2): p. 122-6. [16] S. Raty, E.M. Walters, J. Davis, H. Zeringue, D.J. Beebe, S.L. Rodriguez-Zas, and M.B. Wheeler, Embryonic development in the mouse is enhanced via microchannel culture. Lab Chip, 2004. 4(3): p. 186-90. [17] E.M. Walters, S.G. Clark, H.M. Roseman, D.J. Beebe, and M.B. Wheeler, Production of live piglets following in vitro embryo culture in a microfluidic environment. Theriogenology, 2003. 59(1): p. 353. [18] Y. Xie, F. Wang, W. Zhong, E. Puscheck, H. Shen, and D.A. Rappolee, Shear stress induces preimplantation embryo death that is delayed by the zona pellucida and associated with stress-activated protein kinase-mediated apoptosis. Biol Reprod, 2006. 75(1): p. 45-55. [19] K. Matsuura, N. Hayashi, Y. Kuroda, C. Takiue, R. Hirata, M. Takenami, Y. Aoi, N. Yoshioka, T. Habara, T. Mukaida, and K. Naruse, Improved development of mouse and human embryos using a tilting embryo culture system. Reprod Biomed Online, 2010. 20(3): p. 358-64. [20] Y.S. Heo, L.M. Cabrera, C.L. Bormann, C.T. Shah, S. Takayama, and G.D. Smith, Dynamic microfunnel culture enhances mouse embryo development and pregnancy rates. Hum Reprod, 2010. 25(3): p. 613-22. [21] L.M. Cabrera, Y.S. Heo, J. Ding, S. Takayama, and G.D. Smith, Improved blastocyst development with microfluidics and Braille pin actuator enabled dynamic culture. Fertil. Steril., 2006. 86(3): p. S43. [22] J.R. Alegretti, A.M. Rocha, B.C. Barros, P. Serafini, E.L.A. Motta, and G.D. Smith, Microfluidic dynamic embryo culture increases the production of top quality human embryos through reduction in embryo fragmentation. Fertil Steril, 2011. 96(3): p. S58-S59. [23] M.S. Kim, C.Y. Bae, G. Wee, Y.M. Han, and J.K. Park, A microfluidic in vitro cultivation system for mechanical stimulation of bovine embryos. Electrophoresis, 2009. 30(18): p. 3276-82. [24] C.Y. Bae, M.S. Kim, and J.K. Park, Mechanical stimulation of bovine embryos in a microfluidic culture platform. BioChip, 2011. 5(2): p. 106-113. [25] V. Isachenko, R. Maettner, K. Sterzik, E. Strehler, R. Kreinberg, K. Hancke, S. Roth, and E. Isachenko, In-vitro culture of human embryos with mechanical micro-vibration increases implantation rates. Reprod Biomed Online, 2011. 22(6): p. 536-44. [26] E. Isachenko, R. Maettner, V. Isachenko, S. Roth, R. Kreienberg, and K. Sterzik, Mechanical agitation during the in vitro culture of human pre-implantation embryos drastically increases the pregnancy rate. Clin Lab, 2010. 56(11-12): p. 569-76. [27] Y. Xie, F. Wang, E.E. Puscheck, and D.A. Rappolee, Pipetting causes shear stress and elevation of phosphorylated stress-activated protein kinase/jun kinase in preimplantation embryos. Mol Reprod Dev, 2007. 74(10): p. 1287-94. [28] H. Kimura, H. Nakamura, T. Akai, T. Yamamoto, H. Hattori, Y. Sakai, and T. Fujii, On-chip single embryo coculture with microporous-membrane-supported endometrial cells. IEEE Trans Nanobioscience, 2009. 8(4): p. 318-24. [29] J. Mizuno, S. Ostrovidov, Y. Sakai, T. Fujii, H. Nakamura, and H. Inui, Human ART on chip: improved human blastocyst development and quality with IVF-chip. Fertil Steril, 2007. 88(1): p. S101. [30] S. Jayot, I. Parneix, S. Verdaguer, G. Discamps, A. Audebert, and J.C. Emperaire, Coculture of embryos on homologous endometrial cells in patients with repeated failures of implantation. Fertil Steril, 1995. 63(1): p. 109-114. [31] V. Eyheremendy, F.G. Raffo, M. Papayannis, J. Barnes, C. Granados, and J. Blaquier, Beneficial effect of autologous endometrial cell coculture in patients with repeated implantation failure. Fertil Steril, 2010. 93(3): p. 769-773. [32] W.X. Li, G.T. Liang, W. Yan, Q.L. Zhang, W. Wang, X.M. Zhou, and D.Y. Liu, Artificial Uterus on a Microfluidic Chip. Chinese Journal of Analytical Chemistry, 2013. 41(4): p. 467-472. [33] R.L. Krisher, and M.B. Wheeler, Towards the use of microfluidics for individual embryo culture. Reprod Fertil Dev, 2010. 22(1): p. 32-39. [34] S. Sugimura, T. Akai, T. Somfai, M. Hirayama, Y. Aikawa, M. Ohtake, H. Hattori, S. Kobayashi, Y. Hashiyada, K. Konishi, and K. Imai, Time-lapse cinematography-compatible polystyrene-based microwell culture system: a novel tool for tracking the development of individual bovine embryos. Biol Reprod, 2010. 83(6): p. 970-8. [35] G. Vajta, T.T. Peura, P. Holm, A. Paldi, T. Greve, A.O. Trounson, and H. Callesen, New method for culture of zona-included or zona-free embryos: the Well of the Well (WOW) system. Mol Reprod Dev, 2000. 55(3): p. 256-64. [36] R. Ma, L. Xie, C. Han, K. Su, T. Qiu, L. Wang, G. Huang, W. Xing, J. Qiao, J. Wang, and J. Cheng, In vitro fertilization on a single-oocyte positioning system integrated with motile sperm selection and early embryo development. Anal Chem, 2011. 83(8): p. 2964-70. [37] W.H. Tan, and S. Takeuchi, A trap-and-release integrated microfluidic system for dynamic microarray applications. Proc Natl Acad Sci U S A, 2007. 104(4): p. 1146-51. [38] D. Di Carlo, and L.P. Lee, Dynamic single-cell analysis for quantitative biology. Anal Chem, 2006. 78(23): p. 7918-25. [39] T. Teshima, H. Ishihara, K. Iwai, A. Adachi, and S. Takeuchi, A dynamic microarray device for paired bead-based analysis. Lab Chip, 2010. 10(18): p. 2443-8. [40] J. Chung, Y.J. Kim, and E. Yoon, Highly-efficient single-cell capture in microfluidic array chips using differential hydrodynamic guiding structures. Applied Physics Letters, 2011. 98(12): p. 123701-3. [41] N. Saiz, and B. Plusa, Early cell fate decisions in the mouse embryo. Reproduction, 2013. 145(3): p. R65-80.
|