帳號:guest(18.225.195.163)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):羅子威
作者(外文):Lo, Tzu-Wei
論文名稱(中文):自動定位與共培養之多功能胚胎操控微流體晶片
論文名稱(外文):A Multifunctional Embryos Manipulative Microfluidic Device for Automatic Trapping and Co-culture with Stromal Cells In Vitro
指導教授(中文):劉承賢
指導教授(外文):Liu, Cheng-Hsien
口試委員(中文):張晃猷
盧向成
周莉芳
口試委員(外文):Chang, Hwan-You
Lu, Shiang-Cheng
Chou, Li-Fang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:104033615
出版年(民國):106
畢業學年度:106
語文別:中文
論文頁數:75
中文關鍵詞:生殖醫學體外胚胎培育細胞捕捉共培養
外文關鍵詞:Reproductive MedicineIn Vitro CultureCell TrappingCo-culture
相關次數:
  • 推薦推薦:0
  • 點閱點閱:244
  • 評分評分:*****
  • 下載下載:17
  • 收藏收藏:0
  自工業革命以來,科技的發展日新月異,促使人們生活型態急速變遷,卻也同時造就各種文明病的產生,其中,不孕症則是一個顯著的隱憂。為改善不斷攀升的不孕比例,生殖醫學結合了微機電與微流體技術,期望藉由微流體晶片的方式來突破以往傳統培養上的限制,本研究主要為利用微流體系統與原理來達成自動化的胚胎抓取與追蹤,並使胚胎與子宮內膜細胞進行循環式的共培養,藉此提高體外胚胎發育的品質與成功率。
  實驗初步設計微流體結構並安排各部分的相應功能,可藉由液壓流阻類比電路的概念來設計自動胚胎抓取結構,並以COMSOL分析軟體來進行流場分析,達成最佳化數值,以便之後抓取胚胎。接著為建立合適的仿子宮環境來進行胚胎培養,會將子宮內膜細胞培養至成熟貼附底部,利用其分泌的生長因子與激素提供胚胎發育所需的養分。以結構抓取到胚胎後,會以流場操控胚胎的方式將其送入仿子宮環境之共培養槽進行共培養,於此期間會以動態灌流方式不斷替換培養基,並使胚胎在循環流動的情況下不斷運動,不僅可將細胞代謝物與凋亡細胞帶走,運動提供的物理性刺激也能夠加速胚胎發育。
  本篇研究預期開發多功能整合之體外仿子宮微流體晶片,包含自動抓取、動態灌流、胚胎操控與循環共培養等功能,並比較胚胎單培養、共培養以及傳統培養法之囊胚成長比例及胚胎成長速率。實驗最終結果顯示,單培養與共培養組皆為晶片組囊胚比例佔優勢,證明晶片確實能提供合適的生長環境,但針對子宮內膜細胞之共培養則由於實驗操作因素並無帶來顯著效益。實驗結尾將胚胎植回母體並成功達成著床之目的,證實本研究之可行性與前瞻性。
There are many reasons for infertility, including fallopian tube disease, irregular menstruation and the age. The ability of fertilization for women over thirty years old decreases significantly. In order to solve the growing proportion of infertility, In Vitro Fertilization (IVF) serves as the main treatment nowadays which also plays a critical role in the development of reproductive medicine.
In recent years, the application of biomimetic microfluidic system to IVF has been paid much attention. To optimize the quality of embryos culture, many factors are used to improve the quality of embryos.
In this study, this microfluidic chip integrates the various functions, such as the trapping mechanism via dynamic flow resistance, and co-culturing embryos with human stromal cells providing the growth factors. In my Labchip design, embryos can be manipulated to get into the G-shape co-culture chamber by fluidic field, which enhances embryos growth by the rolling mechanism induced via co-culture.
In this research, we developed the multifunctional microfluidic chip. It is expected that the quality and successful rate of embryos development could be improved due to providing the physical stimulus to construct the biomimicking micro-environment. The experimental results show that the embryos development in our microfluidic chip is higher than the control, which proves our Labchip could provide a suitable micro-environment for the embryos to grow. But the experiment of co-culture with stromal cells doesn’t provide the significant benefits for the embryos due to the experimental operation. At the end of the experiments, the mature embryos can hatch after implanted into the uterus of the mice. Our experimental results demonstrate the feasibility of our multifunctional embryos culture chip.
Abstract 2
摘要 3
致謝 4
目錄 6
圖目錄 10
第一章 緒論 14
1.1 研究背景 14
1.1.1 不孕因素 14
1.1.2 輔助生殖技術(Assisted Reproductive Technology,ART) 15
1.1.3 生醫微機電與實驗室晶片 17
1.1.4 胚胎體內發展 18
1.1.5 自體子宮內膜細胞與受精卵共培養 19
1.2 動機與目的 20
1.3 文獻回顧 21
1.3.1 傳統體外培養方式 21
1.3.2 傳統培養材料 21
1.3.3 體外微流體胚胎培養裝置 22
1.3.4 共養微流體晶片 27
1.3.5 追蹤單一胚胎發展 29
第二章 晶片設計與原理 33
2.1 設計基礎與理論 33
2.1.1 微流體流阻分析 33
2.2 設計概念 34
2.2.1 動態流阻抓取之微結構設計 37
2.2.2 動態流阻抓取分析與模擬 38
2.2.3 G型共培養槽之微結構設計 40
2.2.4 G型共培養槽之操作流程 42
第三章 晶片製程 44
3.1 晶片製作流程 44
3.1.1 晶圓母模製程 44
3.1.2 上下層晶片製程 46
3.1.3 薄膜製程與晶片接合 47
3.2 製程結果 49
3.2.1 微流道實體結構 49
3.3 製程問題與討論 50
第四章 材料與實驗架設 51
4.1 材料準備 51
4.1.1 子宮內膜細胞 51
4.1.2 聚苯乙烯乳膠微粒 52
4.1.3 小鼠胚胎 53
4.1.4 培養基 54
4.2 實驗架設 55
4.2.1 儀器架設 55
第五章 結果與討論 56
5.1 晶片測試結果與討論 56
5.1.1 動態流阻系統微粒與胚胎抓取測試 56
5.1.2 多孔薄膜流場染色擴散測試 57
5.1.3 胚胎操控移入測試 58
5.1.4 胚胎操控取出測試 59
5.2 晶片培養結果與討論 60
5.2.1 子宮內膜細胞培養結果與討論 60
5.2.2 胚胎單培養結果與討論 61
5.2.3 胚胎共培養結果與討論 63
5.2.4 控制組與晶片組之生長階段比較 65
5.2.5 胚胎植回母體著床結果 69
5.3 未來改進與討論 70
第六章 結論 71
參考文獻 72
[1] Shady Grove Fertility Center.
[2] R.G. Brzyski, and J. Knudtson, Female Internal Genital Organs. Merck Manual, 2015
[3] Dr. Bond, Total Health & Care with A Human Touch.
[4] U. Drews, Taschenatlas der Embryologie. 1993: Stuttgart New York Thieme.
[5] Infertility Center of St. Louis.
[6] Advanced Fertility Center of Chicago
[7] Newlife IVF Greece
[8] L.I. Barmat, H.C. Liu, S.D. Spandorfer, A. Kowalik, C. Mele, K. Xu, L. Veeck, M. Damario, and Z. Rosenwaks, Autologous endometrial co-culture in patients with repeated failures of implantation after in vitro fertilization-embryo transfer. J Assist Reprod Genet, 1999. 16(3): p. 121-7.
[9] C. Deachapunya, and S.M. O'Grady, Epidermal growth factor regulates the transition from basal sodium absorption to anion secretion in cultured endometrial epithelial cells. J Cell Physiol, 2001. 186(2): p. 243-50.
[10] F. Dominguez, B. Gadea, A. Mercader, F.J. Esteban, A. Pellicer, and C. Simon, Embryologic outcome and secretome profile of implanted blastocysts obtained after coculture in human endometrial epithelial cells versus the sequential system. Fertil Steril, 2010. 93(3): p. 774-782 e1.
[11] H. Kimura, T. Yamamoto, H. Sakai, Y. Sakai, and T. Fujii, An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models. Lab Chip, 2008. 8(5): p. 741-6.
[12] J.E. Swain, and G.D. Smith, Advances in embryo culture platforms: novel approaches to improve preimplantation embryo development through modifications of the microenvironment. Hum Reprod Update, 2011. 17(4): p. 541-57.
[13] K.S. Kolahi, A. Donjacour, X. Liu, W. Lin, R.K. Simbulan, E. Bloise, E. Maltepe, and P. Rinaudo, Effect of substrate stiffness on early mouse embryo development. PLoS One, 2012. 7(7): p. e41717.
[14] D.A. Rappolee, C. Basilico, Y. Patel, and Z. Werb, Expression and function of FGF-4 in peri-implantation development in mouse embryos. Development, 1994. 120(8): p. 2259-69.
[15] D.L. Hickman, D.J. Beebe, S.L. Rodriguez-Zas, and M.B. Wheeler, Comparison of static and dynamic medium environments for culturing of pre-implantation mouse embryos. Comp Med, 2002. 52(2): p. 122-6.
[16] S. Raty, E.M. Walters, J. Davis, H. Zeringue, D.J. Beebe, S.L. Rodriguez-Zas, and M.B. Wheeler, Embryonic development in the mouse is enhanced via microchannel culture. Lab Chip, 2004. 4(3): p. 186-90.
[17] E.M. Walters, S.G. Clark, H.M. Roseman, D.J. Beebe, and M.B. Wheeler, Production of live piglets following in vitro embryo culture in a microfluidic environment. Theriogenology, 2003. 59(1): p. 353.
[18] Y. Xie, F. Wang, W. Zhong, E. Puscheck, H. Shen, and D.A. Rappolee, Shear stress induces preimplantation embryo death that is delayed by the zona pellucida and associated with stress-activated protein kinase-mediated apoptosis. Biol Reprod, 2006. 75(1): p. 45-55.
[19] K. Matsuura, N. Hayashi, Y. Kuroda, C. Takiue, R. Hirata, M. Takenami, Y. Aoi, N. Yoshioka, T. Habara, T. Mukaida, and K. Naruse, Improved development of mouse and human embryos using a tilting embryo culture system. Reprod Biomed Online, 2010. 20(3): p. 358-64.
[20] Y.S. Heo, L.M. Cabrera, C.L. Bormann, C.T. Shah, S. Takayama, and G.D. Smith, Dynamic microfunnel culture enhances mouse embryo development and pregnancy rates. Hum Reprod, 2010. 25(3): p. 613-22.
[21] L.M. Cabrera, Y.S. Heo, J. Ding, S. Takayama, and G.D. Smith, Improved blastocyst development with microfluidics and Braille pin actuator enabled dynamic culture. Fertil. Steril., 2006. 86(3): p. S43.
[22] J.R. Alegretti, A.M. Rocha, B.C. Barros, P. Serafini, E.L.A. Motta, and G.D. Smith, Microfluidic dynamic embryo culture increases the production of top quality human embryos through reduction in embryo fragmentation. Fertil Steril, 2011. 96(3): p. S58-S59.
[23] M.S. Kim, C.Y. Bae, G. Wee, Y.M. Han, and J.K. Park, A microfluidic in vitro cultivation system for mechanical stimulation of bovine embryos. Electrophoresis, 2009. 30(18): p. 3276-82.
[24] C.Y. Bae, M.S. Kim, and J.K. Park, Mechanical stimulation of bovine embryos in a microfluidic culture platform. BioChip, 2011. 5(2): p. 106-113.
[25] V. Isachenko, R. Maettner, K. Sterzik, E. Strehler, R. Kreinberg, K. Hancke, S. Roth, and E. Isachenko, In-vitro culture of human embryos with mechanical micro-vibration increases implantation rates. Reprod Biomed Online, 2011. 22(6): p. 536-44.
[26] E. Isachenko, R. Maettner, V. Isachenko, S. Roth, R. Kreienberg, and K. Sterzik, Mechanical agitation during the in vitro culture of human pre-implantation embryos drastically increases the pregnancy rate. Clin Lab, 2010. 56(11-12): p. 569-76.
[27] Y. Xie, F. Wang, E.E. Puscheck, and D.A. Rappolee, Pipetting causes shear stress and elevation of phosphorylated stress-activated protein kinase/jun kinase in preimplantation embryos. Mol Reprod Dev, 2007. 74(10): p. 1287-94.
[28] H. Kimura, H. Nakamura, T. Akai, T. Yamamoto, H. Hattori, Y. Sakai, and T. Fujii, On-chip single embryo coculture with microporous-membrane-supported endometrial cells. IEEE Trans Nanobioscience, 2009. 8(4): p. 318-24.
[29] J. Mizuno, S. Ostrovidov, Y. Sakai, T. Fujii, H. Nakamura, and H. Inui, Human ART on chip: improved human blastocyst development and quality with IVF-chip. Fertil Steril, 2007. 88(1): p. S101.
[30] S. Jayot, I. Parneix, S. Verdaguer, G. Discamps, A. Audebert, and J.C. Emperaire, Coculture of embryos on homologous endometrial cells in patients with repeated failures of implantation. Fertil Steril, 1995. 63(1): p. 109-114.
[31] V. Eyheremendy, F.G. Raffo, M. Papayannis, J. Barnes, C. Granados, and J. Blaquier, Beneficial effect of autologous endometrial cell coculture in patients with repeated implantation failure. Fertil Steril, 2010. 93(3): p. 769-773.
[32] W.X. Li, G.T. Liang, W. Yan, Q.L. Zhang, W. Wang, X.M. Zhou, and D.Y. Liu, Artificial Uterus on a Microfluidic Chip. Chinese Journal of Analytical Chemistry, 2013. 41(4): p. 467-472.
[33] R.L. Krisher, and M.B. Wheeler, Towards the use of microfluidics for individual embryo culture. Reprod Fertil Dev, 2010. 22(1): p. 32-39.
[34] S. Sugimura, T. Akai, T. Somfai, M. Hirayama, Y. Aikawa, M. Ohtake, H. Hattori, S. Kobayashi, Y. Hashiyada, K. Konishi, and K. Imai, Time-lapse cinematography-compatible polystyrene-based microwell culture system: a novel tool for tracking the development of individual bovine embryos. Biol Reprod, 2010. 83(6): p. 970-8.
[35] G. Vajta, T.T. Peura, P. Holm, A. Paldi, T. Greve, A.O. Trounson, and H. Callesen, New method for culture of zona-included or zona-free embryos: the Well of the Well (WOW) system. Mol Reprod Dev, 2000. 55(3): p. 256-64.
[36] R. Ma, L. Xie, C. Han, K. Su, T. Qiu, L. Wang, G. Huang, W. Xing, J. Qiao, J. Wang, and J. Cheng, In vitro fertilization on a single-oocyte positioning system integrated with motile sperm selection and early embryo development. Anal Chem, 2011. 83(8): p. 2964-70.
[37] W.H. Tan, and S. Takeuchi, A trap-and-release integrated microfluidic system for dynamic microarray applications. Proc Natl Acad Sci U S A, 2007. 104(4): p. 1146-51.
[38] D. Di Carlo, and L.P. Lee, Dynamic single-cell analysis for quantitative biology. Anal Chem, 2006. 78(23): p. 7918-25.
[39] T. Teshima, H. Ishihara, K. Iwai, A. Adachi, and S. Takeuchi, A dynamic microarray device for paired bead-based analysis. Lab Chip, 2010. 10(18): p. 2443-8.
[40] J. Chung, Y.J. Kim, and E. Yoon, Highly-efficient single-cell capture in microfluidic array chips using differential hydrodynamic guiding structures. Applied Physics Letters, 2011. 98(12): p. 123701-3.
[41] N. Saiz, and B. Plusa, Early cell fate decisions in the mouse embryo. Reproduction, 2013. 145(3): p. R65-80.


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *