帳號:guest(18.119.130.36)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鍾克勤
作者(外文):Chung, Ko-Chin
論文名稱(中文):結合光操控及水膠直寫模組之自動化微流體 系統於雞尾酒藥物之應用
論文名稱(外文):DEMONSTRATION OF DIGITAL DRUG COCKTAILS BY USING A COMBINATION OF OPTICAL MANIPULATION OF PARTICLES AND PATTERNING OF HYDROGELS
指導教授(中文):李國賓
指導教授(外文):Lee, Gwo-Bin
口試委員(中文):陳致真
何宗易
口試委員(外文):Chen, Chih-Chen
Ho, Tsung-Yi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:104033611
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:54
中文關鍵詞:雞尾酒療法聚(乙二醇)二丙烯酸酯水膠微鏡陣列晶片微流體光誘發電場驅動力
外文關鍵詞:Drug cocktailPEGDAHydrogelDigital micromirror deviceMicrofluidicsOptically-induced-dielectrophoresis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:131
  • 評分評分:*****
  • 下載下載:16
  • 收藏收藏:0
此研究裡使用的整合型微流體系統包含兩個技術,分別是光誘發電場驅動力模組,用以操控微粒子以實行藥物的比例操控,以及紫外光微鏡陣列晶片直寫模組,用以藥物的成型封裝。此系統設計能夠實行全自動及客製化的雞尾酒療法製藥方式。藉由光誘發電場驅動力模組,微粒子可以依照設計的不同被挑選、分類及聚集成特定組合。再者,一種水膠溶液poly (ethylene glycol) diacrylate (PEGDA) 其可以配合光起始劑及紫外光,產生特定大小圖形的固化產物,以用來固化水膠內特定數量的藥物,並使經過操控後的微粒子得以被固定,因此首次被用來當作光誘發電場驅動力模組的流體, 初期結果顯示PEGDA具有良好的光誘發電場表現 (最高粒子移動速度356 μm/s和最大力量335 pN),使得微粒子比例控制及圖形固化封裝得以並行,並且,在直寫模組中的微鏡陣列晶片使得不同形狀紫外光圖形設計變得容易,圖形轉換也更加快速,使得不同比例不同圖形的製藥流程都能在60秒內完成。 藉由此機台,將可以首次自動化及客製化的製作雞尾酒療法藥物,對客製化研發或製作雞尾酒藥物將有很大的助力。
This study presents an integrated microfluidic system combining two techniques, namely, an optically-induced-dielectrophoresis (ODEP) module for manipulation of drug-containing particles and a UV-direct-writing module capable of patterning hydrogel for application in the formulation of digital drug cocktails. This system is capable of providing an automatic and customized production of drug cocktails. Using the ODEP module, the drug-contained particles could be selected and assembled. Moreover, , poly (ethylene glycol) diacrylate (PEGDA), a kind of hydrogel, was used for the first time as a medium in the ODEP module such that the manipulated particles could be UV-cured to specific sizes and patterns such that they could accommodate drug combinations subsequently. In addition, drug in PEGDA could also be quantified by the size of the cured PEGDA. The results showed better performance of ODEP in 15% PEGDA aqueous solution (with highest bead movement velocity of 356 μm/s and maximum ODEP force of 335 pN) which made it possible to control and UV-cure the drug-contained particles. Also, with the digital micromirror device (DMD) inside the UV-direct-writing module, different UV patterns could be easily designed and projected, thereby allowing the formation of drug cocktails patterned as different shapes less than 60 seconds. It is for the first time that an automatic digital drug cocktail fabrication could be demonstrated with this approach, which shows immense promise for personalized medicine.
Table of content
摘要 I
Abstract II
致謝 IV
Table of content V
List of figures VII
Abbreviations and nomenclature XIII
Chapter 1 Introduction 1
1-1 Microfluidic technology 1
1-2 Drug cocktails 2
1-3 Background and literature survey 3
1-3-1 Fine-tuning process for drug cocktails 3
1-3-2 Microfluidic applications 4
1-4 Motivation and novelty 5
1-4-1 Optically-induced-dielectrophoresis (ODEP) 5
1-4-2 UV-curable hydrogel and Digital Micromirror Device (DMD) 8
Chapter 2 Materials and methods 11
2-1 Hydrogel sample preparation 11
2-2 Setup of optically induced dielectrophoresis module 12
2-3 Setup of UV direct writing module 13
2-3-1 Digital micromirror device 13
2-3-2 UV beam separation design 14
2-4 Chip design 16
2-5 Chip fabrication and packaging 18
2-5-1 Polydimethylsiloxane casting and bonding process with glass 18
2-5-2 Double-sided tape channel fabrication 20
2-6 Setup of integrated microfluidic system 20
2-7 Experimental procedure 22
2-8 The original ODEP system used to investigate PEGDA feasibility 24
Chapter 3 Results and discussion 26
3-1 PEGDA application on UV-curing 26
3-1-1 Lowest PEGDA concentration for curing in channel 26
3-1-2 UV-light pattern on chip 28
3-1-3 Optimization of curing resolution 30
3-1-4 UV-light intensity versus exposure time 32
3-2 ODEP operation in PEGDA solution 34
3-2-1 Maximum particle velocity and ODEP force 34
3-2-2 Influence of the addition of photo initiator 36
3-2-3 Demonstration of ODEP on PEGDA 38
3-2-4 Feasibility of patterned hydrogels after ODEP manipulation 39
3-3 Demonstration of selecting and embedding targets by using the integrated system 40
3-3-1 Light patterns exposed from two different modules 40
3-3-2 Beads selection using the integrated system 42
3-3-3 Drug cocktails by using the integrated system 43
3-3-4 Drug cocktails by using the integrated system 48
Chapter 4 Conclusion and future perspective 49
4-1 Conclusion 49
4-2 Future perspective 50
References 51
Publication 54































[1] G. M. Whitesides, "The origins and the future of microfluidics," Nature, vol. 442, pp. 368-373, Jul 2006.
[2] R. M. Gulick, J. W. Mellors, D. Havlir, J. J. Eron, C. Gonzalez, D. McMahon, et al., "Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral therapy," New England Journal of Medicine, vol. 337, pp. 734-739, Sep 1997.
[3] E. De Clercq, "Perspectives of non-nucleoside reverse transcriptase inhibitors (NNRTIs) in the therapy of HIV-1 infection," Farmaco, vol. 54, pp. 26-45, Jan-Feb 1999.
[4] J. Kriz, G. Gowing, and J. P. Julien, "Efficient three-drug cocktail for disease induced by mutant superoxide dismutase," Annals of Neurology, vol. 53, pp. 429-436, Apr 2003.
[5] F. Ahmed, R. I. Pakunlu, A. Brannan, F. Bates, T. Minko, and D. E. Discher, "Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug," Journal of Controlled Release, vol. 116, pp. 150-158, Nov 2006.
[6] F. H. Rutten, M. J. M. Cramer, J. W. J. Lammers, D. E. Grobbee, and A. W. Hoes, "Heart failure and chronic obstructive pulmonary disease: An ignored combination?," European Journal of Heart Failure, vol. 8, pp. 706-711, Nov 2006.
[7] C. E. Ashley, E. C. Carnes, G. K. Phillips, D. Padilla, P. N. Durfee, P. A. Brown, et al., "The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers," Nature Materials, vol. 10, pp. 389-397, May 2011.
[8] D. H. Barouch, J. B. Whitney, B. Moldt, F. Klein, T. Y. Oliveira, J. Y. Liu, et al., "Therapeutic efficacy of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys," Nature, vol. 503, pp. 224-+, Nov 2013.
[9] X. G. Qiu, G. Wong, J. Audet, A. Bello, L. Fernando, J. B. Alimonti, et al., "Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp," Nature, vol. 514, pp. 47-+, Oct 2014.
[10] D. Liu, H. Y. Hu, Z. X. Lin, D. W. Chen, Y. Y. Zhu, S. T. Hou, et al., "Quercetin deformable liposome: Preparation and efficacy against ultraviolet B induced skin damages in vitro and in vivo," Journal of Photochemistry and Photobiology B-Biology, vol. 127, pp. 8-17, Oct 2013.
[11] A. D. Bangham, "Liposomes - the Babraham Connection," Chemistry and Physics of Lipids, vol. 64, pp. 275-285, Sep 1993.
[12] F. Olson, C. A. Hunt, F. C. Szoka, W. J. Vail, and D. Papahadjopoulos, "Preparation of Liposomes of Defined Size Distribution by Extrusion through Polycarbonate Membranes," Biochimica Et Biophysica Acta, vol. 557, pp. 9-23, 1979.
[13] T. A. Theodossiou, M. C. Galanou, and C. M. Paleos, "Novel amiodarone-doxorubicin cocktail liposomes enhance doxorubicin retention and cytotoxicity in DU145 human prostate carcinoma cells," Journal of Medicinal Chemistry, vol. 51, pp. 6067-6074, Oct 9 2008.
[14] W. Y. Huang, K. Wang, G. B. Lee, and Ieee, "OPTIMIZATION OF DRUG COCKTAIL ON AN INTEGRATED MICROFLUIDIC SYSTEM," in 2015 28th Ieee International Conference on Micro Electro Mechanical Systems, ed, 2015, pp. 658-661.
[15] Y. T. Chen, V. S. Goudar, R. G. Wu, H. Y. Hsieh, C. S. Yang, H. Y. Chang, et al., "A UV-sensitive hydrogel based combinatory drug delivery chip (UV gel-Drug Chip) for cancer cocktail drug screening," Rsc Advances, vol. 6, pp. 44425-44434, 2016.
[16] A. Ashkin, "ACCELERATION AND TRAPPING OF PARTICLES BY RADIATION PRESSURE," Physical Review Letters, vol. 24, pp. 156-&, 1970.
[17] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "OBSERVATION OF A SINGLE-BEAM GRADIENT FORCE OPTICAL TRAP FOR DIELECTRIC PARTICLES," Optics Letters, vol. 11, pp. 288-290, May 1986.
[18] P. Y. Chiou, H. Moon, H. Toshiyoshi, C. J. Kim, and M. C. Wu, "Light actuation of liquid by optoelectrowetting," Sensors and Actuators a-Physical, vol. 104, pp. 222-228, May 2003.
[19] P. Y. Chiou, A. T. Ohta, and M. C. Wu, "Massively parallel manipulation of single cells and microparticles using optical images," Nature, vol. 436, pp. 370-372, Jul 2005.
[20] W. Y. Lin, Y. H. Lin, and G. B. Lee, "Separation of micro-particles utilizing spatial difference of optically induced dielectrophoretic forces," Microfluidics and Nanofluidics, vol. 8, pp. 217-229, Feb 2010.
[21] N. Kashyap, N. Kumar, and M. Kumar, "Hydrogels for pharmaceutical and biomedical applications," Critical Reviews in Therapeutic Drug Carrier Systems, vol. 22, pp. 107-149, 2005.
[22] K. L. Wang, J. H. Burban, and E. L. Cussler, "HYDROGELS AS SEPARATION AGENTS," Advances in Polymer Science, vol. 110, pp. 67-79, 1993.
[23] H. J. van der Linden, S. Herber, W. Olthuis, and P. Bergveld, "Stimulus-sensitive hydrogels and their applications in chemical (micro)analysis," Analyst, vol. 128, pp. 325-331, 2003.
[24] K. Y. Lee and D. J. Mooney, "Hydrogels for tissue engineering," Chemical Reviews, vol. 101, pp. 1869-1879, Jul 2001.
[25] A. C. Jen, M. C. Wake, and A. G. Mikos, "Review: Hydrogels for cell immobilization," Biotechnology and Bioengineering, vol. 50, pp. 357-364, May 1996.
[26] S. L. Bennett, D. A. Melanson, D. F. Torchiana, D. M. Wiseman, and A. S. Sawhney, "Next-generation HydroGel films as tissue sealants and adhesion barriers," Journal of Cardiac Surgery, vol. 18, pp. 494-499, Nov-Dec 2003.
[27] E. Calo and V. V. Khutoryanskiy, "Biomedical applications of hydrogels: A review of patents and commercial products," European Polymer Journal, vol. 65, pp. 252-267, Apr 2015.
[28] K. R. Kamath and K. Park, "BIODEGRADABLE HYDROGELS IN DRUG-DELIVERY," Advanced Drug Delivery Reviews, vol. 11, pp. 59-84, Jul-Aug 1993.
[29] S. E. Chung, W. Park, H. Park, K. Yu, N. Park, and S. Kwon, "Optofluidic maskless lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels," Applied Physics Letters, vol. 91, Jul 23 2007.
[30] S. H. Huang, H. J. Hsueh, and Y. L. Jiang, "Light-addressable electrodeposition of cell-encapsulated alginate hydrogels for a cellular microarray using a digital micromirror device," Biomicrofluidics, vol. 5, Sep 2011.
[31] Y. H. Lin and G. B. Lee, "Optically induced flow cytometry for continuous microparticle counting and sorting," Biosensors & Bioelectronics, vol. 24, pp. 572-578, Dec 2008.
[32] B. U. Moon, S. S. H. Tsai, and D. K. Hwang, "Rotary polymer micromachines: in situ fabrication of microgear components in microchannels," Microfluidics and Nanofluidics, vol. 19, pp. 67-74, Jul 2015.
[33] P. Panda, S. Ali, E. Lo, B. G. Chung, T. A. Hatton, A. Khademhosseini, et al., "Stop-flow lithography to generate cell-laden microgel particles," Lab on a Chip, vol. 8, pp. 1056-1061, 2008.
[34] S. V. Puttaswamy, S. Sivashankar, R. J. Chen, C. K. Chin, H. Y. Chang, and C. H. Liu, "Enhanced cell viability and cell adhesion using low conductivity medium for negative dielectrophoretic cell patterning," Biotechnology Journal, vol. 5, pp. 1005-1015, Oct 2010.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *