帳號:guest(18.191.186.139)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王政麟
作者(外文):Wang, Zheng-Lin
論文名稱(中文):燒結成塊微孔隙過濾元件與真空模組之 整合與封裝及其應用於全血血漿分離
論文名稱(外文):Compact and Efficient Sintered Porous Filters Driven with Vacuum Modules for Plasma Separation from Whole Blood
指導教授(中文):洪健中
劉通敏
指導教授(外文):Hong, Chien-Chong
Liou, Tong-Miin
口試委員(中文):張晃猷
劉承賢
口試委員(外文):Chand, Hwan-You
Liu, Cheng-Hsien
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:104033609
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:99
中文關鍵詞:燒結成塊微孔隙過濾元件真空模組形狀記憶高分子血漿過濾定點照護
外文關鍵詞:sintered porous filtersvacuum moduleshape memory polymerplasma separationpoint-of-care testing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:341
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
在醫院進行血液檢測通常需要很長的處理時間、複雜的程序並且須要專業的技術人員,因此無法達成即時且有效的醫療照護。為了避免在生物標記物的檢測過中紅血球的干擾,特別是在光學感測當中,紅血球會從血液中被分離出來以作為血液的分析與診斷。目前大部分的被動式血球微過濾器僅能分離出少量的血漿且須要一定的分離時間,然而對於可整合式的晶片上血球微過濾器仍需要搭配真空吸力來源才能達到定點照護與現場分析之目標。本研究論文提出並製作燒結成塊微孔隙過濾元件以及整合形狀記憶高分子真空模組之生醫晶片,就目前文獻回故而言本研究所提出之長度575 μm燒結成塊微孔隙過濾元件是最短的血球微過濾器結構,其長度僅有目前研究文獻的三分之ㄧ。對於人血全血血漿分離,本研究所提出之晶片設計在人血樣本HCT為33 %的條件下,可達到47.76 %之血漿抽取百分比,此外其晶片設計可在5分鐘內分離出2.81 µL之高純度血漿。本研究開發的晶片設計具有無須外接導管、微量樣本需求、易於使用、易於整合、成本效益高、自動控制以及片上廢品樣品儲存和處置等優點。此研究論文所提出之燒結成塊微孔隙過濾元件與真空模組整合之生醫晶片與傳統檢測儀器相比,具有易於使用、易於整合、成本效益高、高分離效率、高血漿分離量、分離時間快速等優點,未來將可與生醫感測器整合於同一微流道晶片,達到定點照護之目標。
Blood tests taken in hospitals typically need long processing time, complicated procedures, and professional technicians, which cannot provide immediate and effective medical care. To avoid red blood cells (RBCs) interference during biomarkers detection, especially in optical sensing, RBCs are separated from the plasma for blood analysis and diagnosis. Most available on-chip passive plasma separators or filters only output low plasma volume with long separation time. On-chip plasma filters remain to be improved by adding a vacuum source for realizing lab-on-a-chip devices in point-of-care testing or on-site analysis. For this study, we designed, fabricated, and characterized on-chip sintered porous filters with a shape-memory-polymer vacuum module for blood/plasma separation. To author’s knowledge, the proposed 575 μm-length filters are the shortest, about one third of those reported in literatures. For human whole-blood separation, extraction efficiency of 47.76 % was achieved with a hematocrit (HCT) of 33 %. Moreover, the separated plasma volume reached up to 2.81 μL within 5 mins. Compared with the traditional detection instrument, the proposed on-chip sintered porous filters integrated with vacuum modules have the advantages of ease of use, ease of integration, cost effectiveness, high efficiency and large volume of plasma separation, on-chip waste sample storage and disposal, and fast driving time.
Chapter 1 Introduction 1
1.1 Point-of-care Testing (POCT) 1
1.2 Blood Analysis for Clinical Diagnostics 5
1.3 Plasma Separation 5
1.3.1 Traditional Plasma Separation Methods 7
1.3.2 Off-Chip Plasma Separators 7
1.3.3 On-Chip Plasma Separator 12
1.3.3.1 Passive Plasma Separators 13
1.3.3.2 Vacuum-Powered Plasma Separators 18
1.4 Porous Microstructures 25
1.5 Research Motivation 26
1.6 Research Objective 26
1.7 Thesis Outlines 27
Chapter 2 Design and Materials 29
2.1 Lab-on-a-Chip Design 29
2.1.1 On-Chip Sintered Porous Filters for Plasma Separation 32
2.1.1.1 Material Selection 32
2.1.1.2 Material Characterization 33
2.1.1.3 Mold Design for Precise Assembly of Beads 34
2.1.2 Shape-Memory-Polymer Vacuum Modules 34
2.2 Analytical Model for Plasma Separation 36
2.3 Summary 41
Chapter 3 Fabrication and Integration 42
3.1 Lab-on-a-Chip Fabrication Process 42
3.1.1 On-Chip Sintered Porous Filters 42
3.1.1.1 Evaporative Assembly of Beads 45
3.1.1.2 Analysis of Pore Size between Beads 47
3.1.1.3 Variation Analysis 48
3.1.2 Shape-Memory-Polymer Vacuum Modules 49
3.2 Integration of Sintered-Polymer Filters with Vacuum Modules on a chip 56
3.3 Summary 58
Chapter 4 Experimental Results 59
4.1. Experimental Setup 59
4.2. Experimental Plans for Clinical Trials 60
4.3. Plasma Separation from whole blood samples 61
4.3.1 Commercial Plasma Separators 61
4.3.2 Passive Plasma Separators 63
4.3.3 Isolated-Beads Plasma Separators with Vacuum Modules 64
4.3.4 Isolated-Beads Reinforced by Multiple Branch Microstructures 65
4.3.5 Plasma Separation Using the Developed Vacuum-Powered Sintered Porous Filters 69
4.4. Comparisons 75
4.5. Discussion 75
4.6. Summary 77
Chapter 5 Conclusions 78
5.1 Main Results 78
5.2 Research Contributions 80
5.3 Suggestions for Future Work 84
Appendix …………………………………………………………………………..86
Reference …………………………………………………………………………..92
Profile of the Author 98
1. Kost G. J., American Journal of Clinical Pathology, 104(4), 111–127 (1995).
2. Kost G. J., Lippincott Williams & Wilkins, 3–12 (2002).
3. Luppa, P B, Müller, C, Schlichtiger, A, and Schlebusch, Trends in Analytical Chemistry, 30(6), 887-898 (2011).
4. Gervais L., Delamarche E., Lab on a Chip, 9, 3330–3337 (2009).
5. Wang J., Ahmad H., Ma C., Shi Q., Vermesh O., Vermesh U., Heath J., Lab on a Chip, 10, 3157–3162 (2010).
6. Jung W., Han J., Kai J., Lim J. Y., Sul D., Ahn C. H., Lab on a Chip, 13(23), 4653-4662 (2013).
7. Clark T. J., McPherson P. H., Buechler K. F., Point of Care: The Journal of Near-Patient Testing & Technology, 1, 42-46 (2002).
8. Chin C. D., Linder V., Sia S. K., Lab on a Chip, 12, 2118-2134 (2012).
9. Psychogios N., Hau D. D., Peng J., Guo A. C., Mandal R., Bouatra S., Sinelnikov I., Krishnamurthy R., Eisner R., Gautam B., Young N., Xia J., Know C., Dong E., Huang P., Hollander Z., Pedersen T. L., Smith S. R., Bamforth F., Greiner R., McManus B., Newman J. W., Goodfriend T., Wishart D. S., PLOS One, 6(2), e16957 (2011).
10. Medical Dictionary, © 2009 Farlex and Partners
11. Maıwenn K. K., Sollier E., Lab on a Chip, 13, 3323 (2013).
12. Anderson N. L., Clinical Chemistry, 56(2), 177-185 (2010).
13. Fuh C. B., Giddings J. C., Biotechnology Progress, 11(1), 14-20 (1995).
14. Wong A. P., Gupta M., Shevkoplyas S. S., Whitesides G. M. Lab on a Chip, 8, 2032-2037 (2008).
15. Liu C., Liao S.-C., Song J., Mauk M. G., Li X., Wu G., Ge D., Greenberg R. M., Yang S., Bau H. H. Lab on a Chip, 16, 553-560 (2016).
16. Kim B, Choi S. Small, 12, 190-197 (2016).
17. Lab-on-a-Chip catalogue 07/2015.
18. http://www.spotonsciences.com/hemaspot-se/
19. Xu L., Lee H., Pinheiro M. V. B., Schneider P., Jetta D., Oh K. W. Biomicrofluidics, 9, 014106 (2015).
20. Spencer W. J., Corbett W. T., Dominguez L. R., Sonics and Ultrasonics, 25(3), 153-156 (1978).
21. Nam-Trung Nguyena N. T., Mengb A. H., Blackb J., Whiteb R. M., Sensors and Actuators A: Physical, 79(2), 115-121 (2000).
22. Suzuki H., Yoneyama R., Sensors and Actuators B: Chemical, 96(1), 38-45 (2003).
23. Yang S., Undar A., Zahn J. D. Lab on a Chip, 6, 871-880 (2006).
24. Tripathi S., Prabhakar A., Kumar N., Singh S. G., Agrawal A. Biomedical Microdevices, 15, 415-425 (2013).
25. Gorkin R., Park J., Siegrist J., Amasia M., Lee B. S., Park J.-M., Kim J., Kim H., Madou M., Cho Y.-K. Lab on a Chip, 10, 1758-1773 (2010).
26. Zhang J., Guo Q., Liu M., Yang J., Journal of Micromechanics and Microengineering, 18, 125025-125030 (2008).
27. Rafeie M., Zhang J., Asadnia M., Li W., Warkiani M. E., Lab on a Chip, 16, 2791 (2016).
28. Yang X., Forouzan O., Brown T. P., Shevkoplyas S. S. Lab on a Chip, 12, 274-280 (2012).
29. Iwai K., Shih K. C., Lin X., Brubaker T. A., Sochol R. D., Lin L., Lab on a Chip, 14(19), 3790-3799 (2014).
30. Tanaka H., Yamamoto S., Nakamura A., Nakashoji Y., Okura N., Nakamoto N., Tsukagoshi K., Hashimoto M., Analytical Chemistry, 87(8), 4134-4143 (2015).
31. Li J. M., Liu C., Xu Z., Zhang K. P., Ke X., Li C. Y., Wang L. D., Lab on a Chip, 11(16), 2785-2789 (2011).
32. Dimov I. K., Basabe-Desmonts L., Garcia-Cordero J. L., Ross B. M., Ricco A. J., Lee L. P. Lab on a Chip, 11, 845-820 (2011).
33. Son J. H., Lee S. H., Hong S. Park S.-M., Lee J., Dickey A., M., Lee L. P. Lab on a Chip, 14, 2287-2292 (2014).
34. Shim J. S., Browne A. W., Ahn C. H. Biomedical Microdevices, 12, 949-957 (2010).
35. Shim J. S., Ahn C. H. Lab on a Chip, 12, 863-866 (2012).
36. Li C., Liu C., Xu Z., Li J. Biomedical Microdevices, 14, 565-572 (2012).
37. Xu L., Lee H., Pinheiro M. V. B., Schneider P., Jetta D., Oh K. W. Biomicrofluidics, 9, 014106 (2015).
38. Lee K. K., Ahn C. H., Lab on a Chip, 13, 3261-3267 (2013).
39. Madadi H., Casals J., Mohammadi M., Biofabrication, 7, 025007 (2015).
40. Maria M. S., Rakesh P. E., Chandra T. S., Sen A. K., Scientific Reports, 7, 43457 (2017).
41. 陳睿鈞, 智慧型高分子微晶片結構開發及其應用於微流體動力模組系統. 清華大學動力機械工程學系學位論文, 2009.
42. 蔡承翰, 拋棄式真空模組開發 及其應用於手持式多功能微流體驅動系統. 清華大學動力機械工程學系學位論文, 2011.
43. 鍾文, 圓形真空模組開發與動態特性分析以及其應用於微流體晶片兩段式精準傳輸. 清華大學動力機械工程學系學位論文, 2013.
44. 李佳翃, 微小化真空模組之開發與探討以及其整合於可拋棄式乳化液滴產生晶片.清華大學動力機械工程學系學位論文,2015.
45. http://www.zjcei.com/jginfo.asp?id=143&oid=143&newsort=60
46. https://en.wikipedia.org/wiki/Polyethylene
47. http://www.sswm.info/content/membrane-filtration
48. Darcy, H., Les Fontaines Publiques de la Ville de Dijon, Dalmont, Paris, 1856
49. Whitaker, S., Transport in Porous Media, 1, 3–25 (1986).
50. Brinkman, H. C., Applied Scientific Research, 1, 27–34 (1949).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *