帳號:guest(3.144.102.156)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蕭宇君
作者(外文):Hsiao, Yu-Chun
論文名稱(中文):利用光介電泳及光誘導區域化電場進行自動化細胞融合之無結構微流體晶片
論文名稱(外文):Automatic cell fusion using optically-induced dielectrophoresis and optically-induced locally-enhanced electric field on a structure-free microfluidic chip
指導教授(中文):李國賓
指導教授(外文):Lee, Gwo-Bin
口試委員(中文):陳致真
林彥亨
口試委員(外文):Chen, Chih-Chen
Lin, Yen-Heng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:104033601
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:45
中文關鍵詞:細胞融合光介電泳光誘導細胞融合區域性增強電場微流體
外文關鍵詞:cell-fusionoptically-induced-dielectrophoresisoptically-induced-cell-fusionlocally-enhanced-electric-fieldmicrofluidics
相關次數:
  • 推薦推薦:0
  • 點閱點閱:771
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
細胞融合是現今重要的生物應用,其範圍涵括多種生醫應用如誘導幹細胞的製造,癌症免疫治療,基因定位,單一複製抗體製造和組織再生。現今主要有三種方式可以實現細胞融合,大致分為物理性,化學性和生物性的方法。然而,如何同時精準地配對細胞和維持穩定的細胞接觸是限制細胞融合達到更高成功率和產量的兩大主因。基於以上種種原因,我們在這項研究中提出了一種新的概念和方法。此方法主要是使用光誘發的介電泳和區域化電場在無結構的的微流體晶片中完成自動化的細胞配對以及細胞融合。我們將由光圖形誘發所產生的「虛擬」電極視作如真實的電極和夾具一般,幫助我們配對細胞以及施加電場進行細胞的電穿孔藉此觸發細胞融合。在經過光介電泳配對細胞後,由系統的虛擬電極搭配特定的光圖形所產生的區域化電場可以在兩個細胞接觸的區域誘發相對最大的膜電位,因此細胞融合得以開始進行。這項研究成功證實了在無微結構輔助下單獨只用光圖形觸發細胞融合的可行性. 我們的系統在胰臟癌細胞和肺腺癌細胞的融合上達到了最高9.67%的成功率這也表示這項技術在不久的將來非常有機會成功優化並應用在大規模的細胞融合。
Cell fusion is a vital technology, which has been well explored for various biomedical applications including production of induced stem cells, cancer immunotherapy, gene mapping, monoclonal antibody production and tissue regeneration. There are three major approaches to realize cell fusion, including physical, chemical and biological methods. However, none of them can perfectly solve two main limitations at the same time, cell pairing and cell contact, to achieve high efficiency and yields. Hence, in this study, we reported a new method using two techniques, including optically-induced dielectrophoresis (ODEP) and optically-induced locally-enhanced electric field (OILEF) to accomplish accurate cell pairing and cell fusion automatically on a structure-free device. “Virtual” electrodes induced by light patterns were served as manipulators and electrodes for cell pairing and cell fusion. After pairing cells by using ODEP techniques, locally-enhanced electric field generated by virtual electrodes could induce a maximum transmembrane potential at the cell contact area such that cell fusion could be triggered. This study successfully demonstrated the feasibility of this new approach that realized cell fusion by using simple light pattern only without any microstructure. A fusion yield of 9.67% was achieved in the cell pair of Pan 1 and A549 cells. It suggested that this promising technique could automatically conduct massive cell fusion within a group of cells in the near future.
Abstract I
摘要 II
Table of contents III
List of figures VI
List of tables XI
Abbreviations and nomenclature XIII
Chapter 1: Introduction 1
1.1 MEMS and microfluidic technology 1
1.2 Background and literature survey 2
1.2.1 Cell fusion 2
1.2.2 Cell fusion on microfluidic devices 2
1.2.3 Amorphous silicon as a photoconductive material 3
1.2.4 ODEP for particle manipulation 4
1.2.5 Critical transmembrane potential for electrofusion 7
1.2.6 Optically-induced cell fusion system 7
1.3 Motivation and novelty 9
Chapter 2: Materials and methods 10
2.1 Chip design 10
Structure-free chip 10
Structured chip 10
2.2 Fabrication process 13
2.2.1 Photolithography process of SU-8 microstructure 13
2.2.2 Chip assembly process 14
Structure-free chip 14
Structured chip 14
2.3 Sample preparation 17
2.3.1 Cells 17
2.3.2 OICF chip 17
2.4 Cell manipulation 18
2.5 Cell electroporation 18
2.6 Experimental procedure 21
Structure-free OICF 21
Structured OICF 21
2.7 Numerical simulation of localized electric field 24
2.8 Experimental setup 26
2.8.1 ODEP system 26
2.8.2 Cell culture system outside typical incubator 26
Chapter 3: Results and discussion 29
3.1 Numerical simulation result of structure-free OICF 29
3.2 Characterization of OICF chip 32
3.2.1 ODEP force 32
3.2.2 Cell pairing in microstructures 33
3.3 Optically-induced cell fusion 36
3.3.1 Cell electroporation in OICF chip 36
3.3.2 Cell electrofusion 36
Chapter 4: Conclusions and future perspectives 41
4.1 Conclusions 41
4.2 Future perspectives 42
References 43
[1] J. C. McDonald, and G. M. Whitesides, “Poly (dimethylsiloxane) as a material for fabricating microfluidic devices,” Accounts of chemical research, 2002, 35(7): pp.491-499.

[2] E. H. Tay, “Microfluidics and BioMEMS applications,” Norwell, MA, USA: Kluwer Academic Publishers, 2002.
[3] M. Tada, T. Tada, L. Lefebvre, S. C. Barton, M. A. Surani, "Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells." Embo Journal, 1997, 16(21): 6510-6520.

[4] V. L. Sukhorukov, R. Reuss, J. M. Endter, S. Fehrmann, A.K. Globa, P. Geßner, A. Steinbach, K. J. Müller, A. Karpas, U. Zimmermann, H. Zimmermann, “A biophysical approach to the optimisation of dendritic-tumour cell electrofusion,” Biochemical and biophysical research communications, 2006, 346(3): pp.829-839.

[5] G. Vassilopoulos, P. R. Wang, and D. W. Russell, “Transplanted bone marrow regenerates liver by cell fusion,” Nature, 2003, 422(6934): pp.901-904.

[6] U. Zimmermann, G. Pilwat, and F. Riemann, “Dielectric breakdown of cell membranes,” Membrane transport in plants, Springer Berlin Heidelberg, 1974: pp.146-153.

[7] H. P. Schwan, “Biophysics of the interaction of electromagnetic energy with cells and membranes,” Biological effects and dosimetry of nonionizing radiation, Springer US, 1983, 49: pp.213-231.

[8] B. R. Lentz, “Polymer-induced membrane fusion: potential mechanism and relation to cell fusion events,” Chemistry and physics of lipids, 1994, 73(1): pp.91-106.

[9] B. R. Lentz, “PEG as a tool to gain insight into membrane fusion,” European Biophysics Journal, 2007, 36(4): pp.315-326.

[10] S. Knutton, “Studies of membrane fusion. III. Fusion of erythrocytes with polyethylene glycol,” Journal of cell science, 1979, 36(1): pp.61-72.

[11] Y. Okada, “Analysis of giant polynuclear cell formation caused by HVJ virus from Ehrlich's ascites tumor cells: I. Microscopic observation of giant polynuclear cell formation,” Experimental cell research, 1962, 26(1): pp.98-107.

[12] S. Knutton, “The mechanism of virus-induced cell fusion,” Micron, 1978, 9(3): pp.133-154.

[13] A. M. Skelley, O. Kirak, H. Suh, R. Jaenisch, J. Voldman, "Microfluidic control of cell pairing and fusion." Nature Methods, 2009, 6(2): 147-152.

[14] P. Y. Chiou, A. T. Ohta, M. C. Wu, "Massively parallel manipulation of single cells and microparticles using optical images." Nature, 2005, 436(7049): 370-372.

[15] Y. H. Lin, G. B. Lee, "An optically induced cell lysis device using dielectrophoresis." Applied Physics Letters, 2009, 94(3).

[16] I. P. Sugar, W. Forster, E. Neumann, " Model of cell electrofusion - membrane electroporation, pore coalescence and percolation." Biophysical Chemistry, 1987, 26(2-3): 321-335.
[17] C. H. Wang, Y. H. Lee, H. T. Kuo, W. F. Liang, W. J. Li, G. B. Lee, "Dielectrophoretically-assisted electroporation using light-activated virtual microelectrodes for multiple DNA transfection." Lab Chip, 2014, 14(3): 592-601.

[18] P. F. Yang, C. H. Wang, G. B. Lee, "Optically-Induced Cell Fusion on Cell Pairing Microstructures." Scientific Reports, 2016, 6, Article number: 22036.

[19] S. Zhao, S. Ammanamanchi, M. Brattain, L. Cao, A. Thangasamy, J. Wang, J. W. Freeman , "Smad4-dependent TGF-beta signaling suppresses RON receptor tyrosine kinase-dependent motility and invasion of pancreatic cancer cells." Journal of Biological Chemistry, 2008, 283(17): 11293-11301.

[20] Y. H. Lin, G. B. Lee, "An integrated cell counting and continuous cell lysis device using an optically induced electric field." Sensors and Actuators B-Chemical, 2010 145(2): 854-860.

[21] U. Zimmermann, "Electrofusion of cells: principles and industrial potential." Trends in Biotechnology, 1983, Volume 1, Issue 5, Pages 149-155.

[22] Y. Zhao, X. T. Zhao, D. Y. Chen, Y. N. Luo, M. Jiang, C. Wei, R. Long, W. T. Yue, J. B. Wang, J. Chen, "Tumor cell characterization and classification based on cellular specific membrane capacitance and cytoplasm conductivity." Biosensors & Bioelectronics, 2014, 57: 245-253.

[23] L. Rems, M. Ušaj, M. Kandušer, M. Reberšek, D. Miklavčič, G. Pucihar, "Cell electrofusion using nanosecond electric pulses." Scientific Reports, 2013, 3:3382.

[24] X. Yu, P. A. McGraw, F. S. House, and J. E. Crowe Jr, “An optimized electrofusion-based protocol for generating virus-specific human monoclonal antibodies,” Journal of Immunological Methods, 2008, 336(2): pp.142-151.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *