帳號:guest(3.144.92.235)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林子耘
作者(外文):Lin, Tzu-Yun
論文名稱(中文):基於奈米碳材料場發射特性所設計之手持式常壓電漿產生系統
論文名稱(外文):Development of handheld atmospheric pressure plasma generated system based on field emission characteristic of nano-carbon materials
指導教授(中文):蔡宏營
指導教授(外文):Tsai, Hung-Yin
口試委員(中文):葉孟考
李紫原
口試委員(外文):Yeh, Meng-Kao
Lee, Chi-Young
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:104033600
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:105
中文關鍵詞:電泳沉積場發射常壓電漿表面處理
外文關鍵詞:electrophoretic depositionfield emissionatmospheric plasmasurface treatment
相關次數:
  • 推薦推薦:0
  • 點閱點閱:342
  • 評分評分:*****
  • 下載下載:24
  • 收藏收藏:0
本研究的目的是為了製作場發射特性良好之碳材料作為電極端,利用此電極端來設計一個常壓電漿產生手持裝置。該裝置所具有的功能為:(1) 實驗材料或實驗設備的表面清潔;(2) 試片的電漿前處理。
本研究透過電泳沉積法(electrophoretic deposition method, EPD method),於銅柱上沉積具有良好場發射特性之奈米碳材料作為電漿產生裝置電極端,藉由控制製程參數,如懸浮液配置、陰陽極間距離、沉積電壓、以及沉積時間,探討奈米碳材料沉積在銅電極上的結果。從實驗結果得知,當使用石墨烯與碳管之複合材料所做的電泳沉積結果擁有較好的場發射特性與附著性。
本研究所設計之電漿裝置長度為85 mm、直徑為54 mm之圓柱狀裝置,藉由機構設計使陰陽極距離間距為500 μm,此距離為場發射檢測時常用之陰陽極距離。透過施加能量後碳材料所產生的電子來使氣體擁有較低的崩潰電壓,減少產生電漿時所需能量。
本研究成功研發出手持式電漿產生裝置,驗證出有沉積碳材料之電極相較於純銅電極能有更優的電漿產生情形,並且藉由所產生之氬氣電漿對銅片做處理使其表面產生改質效果。
The purpose of this study is to develop a carbon materials deposited electrode which has good field emission property. Next we design a handheld plasma generated device based on the carbon materials deposited electrode. There are two main functions for this plasma device: (1) To clean the surface of experimental materials or equipment; (2) To pretreat samples to change the properties of the samples.
This study deposit carbon materials with good field emission property on copper electrode by electrophoretic deposition method (EPD) and find the best result by controlling process parameters such as suspension preparation, the distance between two electrodes, deposition voltage and deposition time. After doing the experiment, we discovered that when the suspension is graphene and carbon nanotube composite suspension, the result will have the best field emission property and adhesion.
The length and the diameter of the cylindrical device are 85 mm and 54 mm. The distance between two electrodes is 500 μm. This study tried to decrease the power to generate plasma by ejecting electrons from carbon materials because of its field emission property.
This study developed handheld plasma generated device successfully and then verified out the plasma can be generated much more easily by carbon materials deposited electrode. Argon plasma can be generated by this device and then do the surface treatment on copper foil to make the surface become hydrophilic.
摘要 I
Abstract II
致謝 III
目錄 VII
圖目錄 XI
表目錄 XVI
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
第二章 文獻回顧 3
2.1 電漿系統 3
2.1.1 電漿簡介 3
2.1.2 電漿產生理論 3
2.1.3 電漿系統反應方程式 5
2.1.4 平衡電漿與非平衡電漿 7
2.1.5 常壓電漿 9
2.2 場發射效應 13
2.2.1 場發射簡介 13
2.2.2 場發射理論 15
2.2.3 發射端尺寸效應 16
2.2.4 場發射遮蔽效應 20
2.3 奈米碳管 26
2.3.1 奈米碳管簡介 26
2.3.2 奈米碳管結構與特性 27
2.3.3 奈米碳管製備方式 29
2.4 石墨烯 34
2.4.1 石墨烯簡介 34
2.4.2 石墨烯結構與特性 35
2.4.3 石墨烯製備方式 36
2.5 電泳沉積法 39
2.5.1 電泳沉積法簡介 39
2.5.2 電泳沉積理論 40
2.5.3 電泳懸浮液 42
第三章 研究方法 45
3.1 實驗設計 45
3.2 實驗製程步驟 46
3.2.1 銅陰極前處理 46
3.2.2 碳管官能化處理 46
3.2.3 懸浮液製備 47
3.2.4 電泳沉積 48
3.2.5 電漿產生裝置設計 50
3.2.6 電漿產生系統 53
3.2.7 電漿產生檢測 54
3.3 實驗儀器與材料 55
3.3.1 電泳沉積 55
3.3.2 掃描式電子顯微鏡 57
3.3.3 場發射量測儀 57
3.3.4 射頻電源供應器 59
3.4 實驗藥品與氣體 60
第四章 研究結果與討論 61
4.1 奈米碳材料於平板沉積與其場發射特性 61
4.1.1 奈米碳管 + 十二烷基硫酸鈉 + 去離子水 61
4.1.2 奈米碳管 + 氯化鎂 + 乙醇 65
4.1.3 石墨烯 + 氯化鎂 + 異丙醇 69
4.1.4 奈米碳管 + 氯化鎂 + 異丙醇 71
4.1.5 石墨烯 + 奈米碳管 + 氯化鎂 + 異丙醇 74
4.2 奈米碳材料場發射輔助電漿系統測試 77
4.2.1 電源供應器對電漿產生之影響 77
4.2.2 輸出功率與氣體流量對電漿產生之影響 79
4.2.3 碳材料電極對電漿產生之影響 84
4.2.4 電漿表面處理測試 94
第五章 結論與未來展望 97
5.1 結論 97
5.2 未來展望 98
參考文獻 100
[1] W. Crookes, "On radiant matter; a lecture delivered to the British Association for the Advancement of Science, at Sheffield, Friday, August 22, 1879," The American Journal of Science and Arts. , vol. 106, pp. 241-262, 1879.
[2] I. Langmuir, "Oscillations in ionized gases," Proceedings of the National Academy of Sciences, vol. 14, pp. 627-637, 1928.
[3] M. J. Druyvesteyn and F. M. Penning, "The mechanism of electrical discharges in gases of low pressure," Reviews of Modern Physics, vol. 12, pp. 87-176, 1940.
[4] J. T. Gudmundsson, "On the effect of the electron energy distribution on the plasma parameters of an argon discharge: a global (volume-averaged) model study," Plasma Sources Science and Technology, vol. 10, pp. 76-81, 2001.
[5] 徐逸明, 游閔盛, 郭有斌, 黃傑, and 洪昭南, "常壓電漿原理、技術與應用," 化工技術, vol. 197, pp. 68-85, 2009.
[6] B. E. U. Kogelschatz, "Nonequilibrium volume plasma chemical processing," IEEE Transactions on Plasma Science, vol. 19, no. 6, pp. 1063-1077, 1991.
[7] G. S. Selwyn, H. W. Herrmann, J. Park, and I. Henins, "Materials processing using an atmospheric pressure, RF-generated plasma source," Contributions to Plasma Physics, vol. 41, no. 6, pp. 610-619, 2001.
[8] A. Schu ̈tze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, "The atmospheric-pressure plasma jet: a review and comparison to other plasma sources," IEEE Transactions on Plasma Science, vol. 26, no. 6, pp. 1685-1694, 1998.
[9] F. Paschen, "Ueber die zum funkenübergang in luft, wasserstoff und kohlensäure bei verschiedenen drucken erforderliche potentialdifferenz," Annalen der Physik, vol. 273, no. 5, pp. 69-96, 1889.
[10] P. Fauchais and A. Vardelle, "Thermal plasmas," IEEE Transactions on Plasma Science, vol. 25, no. 6, pp. 1258-1280, 1997.
[11] J. S. Chang, P. A. Lawless, and T. Yamamoto, "Corona discharge processes," IEEE Transactions on Plasma Science, vol. 19, no. 6, pp. 1152-1166, 1991.
[12] U. Reitz, J. G. H. Salge, and R. Schwarz, "Pulsed barrier discharges for thin film production at atmospheric pressure," Surface and Coatings Technology, vol. 59, no. 1, pp. 144-147, 1993.
[13] J. Y. Jeong, S. E. Babayan, V. J. Tu, J. Park, I. Henins, R. F. Hicks, and G. S. Selwyn, "Etching materials with an atmospheric-pressure plasma jet," Plasma Sources Science and Technology, vol. 7, no. 3, pp. 282-285, 1998.
[14] Y. Li, Y. Sun, and J. T. W. Yeow, "Nanotube field electron emission: principles, development, and applications," Nanotechnology, vol. 26, no. 24, p. 242001, 2015.
[15] R. H. Fowler and L. Nordheim, "Electron emission in intense electric fields," Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 119, pp. 173-181, 1928.
[16] J. He, P. H. Cutler, and N. M. Miskovsky, "Generalization of Fowler–Nordheim field emission theory for nonplanar metal emitters," Applied Physics Letters, vol. 59, no. 13, pp. 1644-1646, 1991.
[17] K. L. Jensen and E. G. Zaidman, "Field emission from an elliptical boss: Exact versus approximate treatments," Applied Physics Letters, vol. 63, no. 5, pp. 702-704, 1993.
[18] K. L. Jensen and E. G. Zaidman, "Field emission from an elliptical boss: Exact and approximate forms for area factors and currents," Journal of Vacuum Science & Technology B, vol. 12, no. 2, pp. 776-780, 1994.
[19] K. L. Jensen and E. G. Zaidman, "Analytic expressions for emission characteristics as a function of experimental parameters in sharp field emitter devices," Journal of Vacuum Science & Technology B, vol. 13, no. 2, pp. 511-515, 1995.
[20] T. S. Fisher, "Influence of nanoscale geometry on the thermodynamics of electron field emission," Applied Physics Letters, vol. 79, no. 22, pp. 3699-3701, 2001.
[21] N. Pan, H. Xue, M. Yu, X. Cui, X. Wang, J. G. Hou, J. Huang, and S. Z. Deng "Tip-morphology-dependent field emission from ZnO nanorod arrays," Nanotechnology, vol. 21, no. 22, p. 225707, 2010.
[22] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J-M. Bonard, and K. Kern, "Scanning field emission from patterned carbon nanotube films," Applied Physics Letters, vol. 76, no. 15, pp. 2071-2073, 2000.
[23] J. S. Suh, K. S. Jeong, J. S. Lee, and I. Han, "Study of the field-screening effect of highly ordered carbon nanotube arrays," Applied Physics Letters, vol. 80, no. 13, pp. 2392-2394, 2002.
[24] R. C. Smith and S. R. Silva, "Maximizing the electron field emission performance of carbon nanotube arrays," Applied Physics Letters, vol. 94, no. 13, p. 133140, 2009.
[25] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, "C60: Buckminsterfullerene," Nature, vol. 318, no. 6042, pp. 162-163, 1985.
[26] Q. M. Zhang, J. Y. Yi, and J. Bernholc, "Structure and dynamics of solid C60," Physical Review Letters, vol. 66, no. 20, pp. 2633-2636, 1991.
[27] S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, no. 6348, pp. 56-58, 1991.
[28] S. Iijima and T. Ichihashi, "Single-shell carbon nanotubes of 1-nm diameter," Nature, vol. 363, pp. 603-605, 1993.
[29] R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, "Electronic structure of chiral graphene tubules," Applied Physics Letters, vol. 60, no. 18, pp. 2204-2206, 1992.
[30] W. Kim, H. C. Choi, M. Shim, Y. Li, D. Wang, and H. Dai, "Synthesis of ultralong and high percentage of semiconducting single-walled carbon nanotubes," Nano Letters, vol. 2, no. 7, pp. 703-708, 2002.
[31] S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, "Self-oriented regular arrays of carbon nanotubes and their field emission properties," Science, vol. 283, no. 5401, pp. 512-514, 1999.
[32] G. D. Nessim, "Properties, synthesis, and growth mechanisms of carbon nanotubes with special focus on thermal chemical vapor deposition," Nanoscale, vol. 2, no. 8, pp. 1306-1323, 2010.
[33] Y. Chen, Z. L. Wang, J. S. Yin, D. J. Johnson, and R. H. Prince, "Well-aligned graphitic nanofibers synthesized by plasma-assisted chemical vapor deposition," Chemical Physics Letters, vol. 272, no. 3, pp. 178-182, 1997.
[34] M. Meyyappan, L. Delzeit, A. Cassell, and D. Hash, "Carbon nanotube growth by PECVD: a review," Plasma Sources Science and Technology, vol. 12, no. 2, pp. 205-216, 2003.
[35] E. G. Gamaly and T. W. Ebbesen, "Mechanism of carbon nanotube formation in the arc discharge," Physical Review B, vol. 52, no. 3, pp. 2083-2089, 1995.
[36] J. H. Park, S. V. N. Pammi, H. J. Jung, T. Y. Cho, and S. G. Yoon, "ITO/CNT nano composites as a counter electrode for the Dye-Sensitized solar cell applications," Journal of the Korean Institute of Electrical and Electronic Material Engineers, vol. 24, no. 1, pp. 76-80, 2011.
[37] M. Yudasaka, T. Komatsu, T. Ichihashi, and S. Iijima, "Single-wall carbon nanotube formation by laser ablation using double-targets of carbon and metal," Chemical Physics Letters, vol. 278, no. 1, pp. 102-106, 1997.
[38] S. Arepalli, "Laser ablation process for single-walled carbon nanotube production," Journal of Nanoscience and Nanotechnology, vol. 4, no. 4, pp. 317-325, 2004.
[39] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature Material, vol. 6, pp. 183-191, 2007.
[40] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres,and A. K. Geim, "Fine structure constant defines visual transparency of graphene," Science, vol. 320, pp. 1308-1308, 2008.
[41] M. Yi and Z. Shen, "A review on mechanical exfoliation for the scalable production of graphene," Journal of Materials Chemistry A, vol. 3, pp. 11700-11715, 2015.
[42] A. Tejeda, A. Taleb-Ibrahimi, W. D. Heer, C. Berger, and E. H. Conrad, "Electronic structure of epitaxial graphene grown on the C-face of SiC and its relation to the structure," New Journal of Physics, vol. 14, p. 125007, 2012.
[43] K. S. Kim, Y. Zhao, H. Jang, S. Y. Le, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong "Large-scale pattern growth of graphene films for stretchable transparent electrodes," Nature, vol. 457, pp. 706-410, 2009.
[44] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, "Large-area synthesis of high-quality and uniform graphene films on copper foils," Science, vol. 324, pp. 1312-1314, 2009.
[45] F. F. Reuss, "Sur un nouvel effet de l'électricité galvanique," Mémoires De La Société Impériale Des Naturalistes De Moscou., vol. 2, pp. 327-337, 1809.
[46] A. R. Boccaccini, J. Cho, J. A. Roether, B. J. C. Thomas, E. J. Minay, and M. S. P. Shaffer, "Electrophoretic deposition of carbon nanotubes," Carbon, vol. 44, no. 15, pp. 3149-3160, 2006.
[47] P. Sarkar and P. S. Nicholson, "Electrophoretic deposition (EPD): mechanisms, kinetics, and application to ceramics," Journal of the American Ceramic Society, vol. 79, no. 8, pp. 1987-2002, 1996.
[48] 粘正勳 and 邱聞鋒, "介電泳動─承先啟後的奈米操縱術," 物理雙月刊, vol. 23, no. 6, pp. 491-497, 2004.
[49] H. C. Hamaker, "Formation of a deposit by electrophoresis," Transactions of the Faraday Society, vol. 35, pp. 279-287, 1940.
[50] A. Avgustinik, V. Vigdergauz, and G. Zhuravlev, "Electrophoretic deposition of ceramic masses from suspensions and calculation of deposit yields," Journal of Applied Chemistry of the USSR, vol. 35, pp. 2090-2093, 1962.
[51] Z. Zhang, Y. Huang, and Z. Jiang, "Electrophoretic deposition forming of Sic-TZP composites in a nonaqueous sol media," Journal of the American Ceramic Society, vol. 77, no. 7, pp. 1946-1949, 1994.
[52] J. A. Lewis, "Colloidal processing of ceramics," Journal of the American Ceramic Society, vol. 83, no. 10, pp. 2341-2359, 2000.
[53] B. Derjaguin and L. Landau, "Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes," Acta Physicochim. URSS, vol. 14, no. 6, pp. 633-662, 1941.
[54] E. J. W. Verwey and J. T. G. Overbeek, Theory of the stability of lyophobic colloids: the interaction of sol particles having an electric double layer. Amsterdam: Elsevier, 1948.
[55] J. T. G. Overbeek, "Recent developments in the understanding of colloid stability," Journal of Colloid and Interface Science, vol. 58, no. 2, pp. 408-422, 1976.
[56] K. Samanta, M. Jassal, and A. K. Agrawal, "Atmospheric pressure glow discharge plasma and its application applications in textile," Indian Journal of Fibre & Textile Research, vol. 31, pp. 83-98, 2006.
[57] Q. Xiong, A. Y. Nikiforov, Manuel, A. Gonz´alez, C. Leys, and X. P. Lu, "Characterization of an atmospheric helium plasma jet by relative and absolute optical emission spectroscopy," Plasma Sources Science and Technology, vol. 22, p. 015011, 2013.
[58] T. L. Koh, E. C. O’Hara, and M. J. Gordon, "Microplasma-based synthesis of vertically aligned metal oxide nanostructures," Nanotechnology, vol. 23, p. 425603, 2012.
[59] P. He, H. Sun, Y. Gui, F. Lapostolle, H. Liao, and C. Coddet, "Microstructure and properties of nanostructured YSZ coating prepared by suspension plasma spraying at low pressure," Surface & Coatings Technology, vol. 261, no. 318-326, 2014.
[60] Y. Deng, A. D. Handoko, Y. Du, S. Xi, and B. S. Yeo, "In situ raman spectroscopy of copper and copper oxide surfaces during electrochemical oxygen evolution reaction: Identification of Cu III oxides as catalytically active species," ACS Catalysis, vol. 6, pp. 2473–2481, 2016.
[61] M. Pei, B. Wang, Y. Tang, X. Zhang, H. Yan, and X. Zhang, "Preparation of Cu2O superhydrophobic film with hierarchical structure via the facile route," Asian Journal of Chemistry, vol. 26, pp. 315-318, 2013.
[62] K. Tang, X. Wang, W. Yan, J. Yu, and R. Xu, "Fabrication of superhydrophilic Cu2O and CuO membranes," Journal of Membrane Science, vol. 286, pp. 279–284, 2006.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *