帳號:guest(3.147.89.255)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):杜少宇
作者(外文):Tu, Shao-Yu
論文名稱(中文):垂直整合電容與壓阻感測之 CMOS-MEMS觸覺感測器 以實現大感測範圍
論文名稱(外文):Vertical Integration of Capacitive and Piezo-resistive Sensing Units to Enlarge the Sensing Range of CMOS-MEMS Tactile Sensor
指導教授(中文):方維倫
指導教授(外文):Fang, Wei-leun
口試委員(中文):李昇憲
劉育嘉
陳世叡
口試委員(外文):LI, SHENG-SHIAN
Liu, Yu-Chia
Chen, Shih-Jui
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:104033597
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:109
中文關鍵詞:觸覺感測器垂直整合提高感測範圍電容與壓阻
外文關鍵詞:CMOS-MEMStactile sensorintegration of capacitive and piezo-resistiveenlarge sensing range
相關次數:
  • 推薦推薦:0
  • 點閱點閱:485
  • 評分評分:*****
  • 下載下載:79
  • 收藏收藏:0
觸覺感測器為一種能感知外部施力的元件,根據用途不同所需之感測範圍也不盡相同。目前在多功能機器人身上通常會放置不同感測範圍之觸覺感測器,以彌補單一元件無法感測如此大的施力範圍。因此,本研究利用TSMC 0.18μm 1P6M 標準CMOS製程平台,設計一垂直整合電容與壓阻感測單元之觸覺感測器。利用上層電容式結構擁有高靈敏度之特色來感測較小之施力,當施力逐漸增大而使電容飽和後,力將傳遞至下層結構,利用下層壓阻結構來感測較大之施力,以此來提升單一元件之感測範圍。結構完成後並進一步在元件中填入不同硬度之PDMS高分子,來達到製程後調變感測範圍之特色。
With the fast development of robot recently, various related sensors such as tactile and image sensors have received attention. The tactile sensor could enable the robot to realize the contact conditions which are critical to many applications.
This study presents a tactile sensor design to enlarge the sensing range by vertically integrated capacitive and piezo-resistive sensing units. The smaller loads are detected by the relatively sensitive capacitive sensing unit with deformable electrode of lower stiffness. As the load exceeding a threshold, the deformable electrode will contact the reference electrode and cause the saturation of capacitive sensing. Meanwhile, the force will transmit to the supporting structure of piezo-resistive sensors. The larger loads are then detected by the piezo-resistive sensing units attached to a relatively stiff supporting structure. Thus, the sensing range of tactile sensor is improved. The presented design is implemented by the TSMC 0.18μm 1P6M standard CMOS process and in-house post-CMOS releasing. After process, the sensitivity and sensing range of tactile sensor can be furtherly tuned by PDMS polymer filled-in.
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
第一章 緒論 1
1-1 前言 1
1-2 研究動機 2
1-3 文獻回顧 5
1-3-1 電容式 5
1-3-2 壓阻式 7
1-3-3 CMOS-MEMS 9
1-4 研究目標 10
1-5 全文架構 12
第二章 感測原理與設計規劃 23
2-1 TSMC 0.18μm 1P6M 製程平台 23
2-2 感測機制 23
2-2-1 電容式感測 24
2-2-2 壓阻式感測 25
2-3 結構設計 30
2-3-1 電容式感測結構 31
2-3-2 壓阻式感測結構 32
2-4 模擬分析 33
2-4-1 電容單元模擬 34
2-4-2 壓阻單元模擬 36
第三章 製程規劃與結果 49
3-1 光罩佈局規劃 49
3-2 CMOS-MEMS後製程與結果 53
第四章 量測結果與討論 70
4-1 電容感測單元量測 70
4-1-1 表面形貌量測 70
4-1-2 電容單元力學量測 73
4-2 壓阻感測單元量測 75
4-2-1 壓阻單元力學量測 76
4-2-2 溫度影響量測 77
第五章 結論與未來工作 89
5-1 結論 89
5-2 未來工作 90
(1) 元件改良 90
(2) 機電整合 91
參考文獻 96
附錄 101
附錄A: 結構改良設計 101
附錄B: 電路設計 107
T. Müller, M. Brandl, O. Brand, and H. Baltes, "An industrial CMOS process family adapted for the fabrication of smart silicon sensors," Sensors and Actuators A: Physical, vol. 84, pp. 126-133, 2000.
[2] S. Eminoglu, M. Y. Tanrikulu, and T. Akin, "A low-cost 128 × 128 uncooled infrared detector array in CMOS process," Journal of Microelectromechanical Systems, vol. 17, pp. 20-29, 2008.
[3] M. Ádám, T. Mohácsy, P. Jónás, C. Dücső, É. Vázsonyi, and I. Bársony, "CMOS integrated tactile sensor array by porous Si bulk micromachining," Sensors and Actuators A: Physical, vol. 142, pp. 192-195, 2008.
[4] S. Chowdhury, M. Ahmadi, and W. C. Miller, "Design of a MEMS acoustical beamforming sensor microarray," IEEE Sensors Journal, vol. 2, pp. 617-627, 2002.
[5] SENSIRION, https://www.sensirion.com/
[6] INVENSENSE, https://www.invensense.com/
[7] IRLYNX, http://www.irlynx.com/
[8] The Economist Intelligence Unit, http://www.eiu.com/
[9] ROBOT GOSSIP, http://robotgossip.blogspot.tw/2005_11_01_ archive.html
[10] ZENBO, https://zenbo.asus.com/tw/
[11] NAO, http://www.ald.softbankrobotics.com/en/cool-robots/nao
[12] PEPPER, https://www.ald.softbankrobotics.com/en/cool-robots/ pepper
[13] H. Takao, K. Sawada, and M. Ishida, "Multifunctional smart tactile-image sensor with integrated arrays of strain and temperature sensors on single air-pressurized silicon diaphragm," Transducers, Seoul, Korea, pp. 45-48, 2005.
[14] H. Takao, M. Yawata, K. Sawada, and M. Ishida, "Two-dimensional silicon smart tactile image-sensor with single sensing diaphragm actuated by vibrating pressure for simultaneous detection of force and object hardness distributions," IEEE MEMS, Istanbul, Turkey, pp. 602-605, 2006.
[15] Y. Maeda, K. Terao, T. Suzuki, F. Shimokawa, and H. Takao, "A tactile sensor with the reference plane for detection abilities of frictional force and human body hardness aimed to medical applications," IEEE MEMS, Estoril, Portugal, pp. 253-256, 2015.
[16] H. Takao, H. Okada, M. Ishida, T. Suzuki, and F. Oohira, "Flexible silicon triaxial tactile imager with integrated 800um-pitch sensor pixel structures on a diaphragm," IEEE Sensors, Limerick, Ireland, pp. 663-666, 2011.
[17] H. Takao, M. Yawata, K. Sawada, M. Ishida, and H. Okada, "Three dimensional surface-shape tactile imager with fingertip-size silicon integrated sensor-membrane," IEEE MEMS, Denver, CO, pp. 2186-2189, 2009.
[18] ASMIO, http://world.honda.com/HondaRobotics/
[19] TWENDY-ONE, http://www.twendyone.com/
[20] J. Engel, J. Chen, Z. Fan, and C. Liu, "Polymer micromachined multimodal tactile sensors," Sensors and Actuators A: Physical, vol. 117, pp. 50-61, 2005.
[21] 達文西機械手術手臂, http://www.intuitivesurgical.com/
[22] B. Charlot, F. Parrain, N. Galy, S. Basrour, and B. Courtois, "A sweeping mode integrated fingerprint sensor with 256 tactile microbeams," Journal of Microelectromechanical Systems, vol. 13, pp. 636-644, 2004.
[23] Bed Monitoring System, https://www.tekscan.com/applications/ bed-monitoring-system-flexiforce-sensors
[24] Y.-C. Liu, C.-M. Sun, L.-Y. Lin, M.-H. Tsai, and W. Fang, "Development of a CMOS-Based capacitive tactile sensor with adjustable sensing range and sensitivity using polymer fill-in," Journal of Microelectromechanical Systems, vol. 20, pp. 119-127, 2011.
[25] W.-C. Lai, and W. Fang, "Novel two-stage CMOS-MEMS capacitive-type tactile-sensor with ER-fluid fill-in for sensitivity and sensing range enhancement," Transducers, Anchorage, Alaska, pp. 1175-1178, 2015.
[26] J. A. Dobrzynska, and M. A. M. Gijs, "Polymer-based flexible capacitive sensor for three-axial force measurements," Journal of Micromechanics and Microengineering, vol. 23, p. 015009, 2013.
[27] H. Takahashi, A. Nakai, T.-V. Nguyen, K. Matsumoto, and I. Shimoyama, "A triaxial tactile sensor without crosstalk using pairs of piezoresistive beams with sidewall doping," Sensors and Actuators A: Physical, vol. 199, pp. 43-48, 2013.
[28] T.-V. Nguyen, B.-K. Nguyen, H. Takahashi, K. Matsumoto, and I. Shimoyama, "High-sensitivity triaxial tactile sensor with elastic microstructures pressing on piezoresistive cantilevers," Sensors and Actuators A: Physical, vol. 215, pp. 167-175, 2014.
[29] S. Sokhanvar, M. Packirisamy, and J. Dargahi, "A multifunctional PVDF-based tactile sensor for minimally invasive surgery," Smart Materials And Structures, vol. 16, pp. 989-998, 2007.
[30] J.-I. Yuji, and C. Sonoda, "A PVDF tactile sensor for static contact force and contact temperature," IEEE Sensors, South, Korea, pp. 738-741, 2006.
[31] J.-S. Heo, J.-H. Chung, and J.-J. Lee, "Tactile sensor arrays using fiber Bragg grating sensors," Sensors and Actuators A: Physical, vol. 126, pp. 312-327, 2006.
[32] S. Wattanasarn, K. Noda, K. Matsumoto, and I. Shimoyama, "3D flexible tactile sensor using electromagnetic induction coils," IEEE MEMS, Paris, France, pp. 488-491, 2012.
[33] C.-T. Ko, S.-H. Tseng, and Michael S.-C. Lu, "A CMOS micromachined capacitive tactile sensor with high-frequency output," Journal of Microelectromechanical Systems, vol. 15, pp. 1708-1714, 2006.
[34] A. Tibrewala, A. Phataralaoha, and S. Büttgenbach, "Simulation, fabrication and characterization of a 3D piezoresistive force sensor," Sensors and Actuators A: Physical, vol. 147, pp. 430-435, 2008.
[35] H. K. Lee, J. Chung, S. I. Chang, and E. Yoon, "Normal and shear force measurement using a flexible polymer tactile sensor with embedded multiple capacitors," Journal of Microelectromechanical Systems, vol. 17, pp. 934-942, 2008.
[36] N.A. Ahmad Ridzuan, S. Masuda, and N. Miki, "Flexible capacitive sensor encapsulating liquids as dielectric with a largely deformable polymer membrane," Micro & Nano Letters, vol. 7, pp. 1193-1196, 2012.
[37] D. Alveringh, R.A. Brookhuis, R.J. Wiegerink, and G.J.M. Krijnen, "A large range multi-axis capacitive force/torque sensor realized in a single SOI wafer," IEEE MEMS, San Francisco, CA, pp. 680- 683, 2014.
[38] R. A. Brookhuis, R. J. Wiegerink, T. S. J. Lammerink, K. Ma, and G. J. M. Krijnen, "Large range multi-axis fingertip force sensor," Transducers & Eurosensors XXVII, Barcelona, Spain, pp. 2737-2740, 2013.
[39] D. V. Dao, and S. Sugiyama, "Fabrication and characterization of 4-DOF soft-contact tactile sensor and application to robot fingers," Micro-NanoMechatronics and Human Science, Nagoya, Japan, pp. 1-6, 2006.
[40] T. Okatani, H. Takahashi, T. Takahata, and I. Shimoyama, "Evaluation of ground slippery condition during walk of bipedal robot using MEMS slip sensor," IEEE MEMS, Las Vegas, NV, pp. 1033-1035, 2017.
[41] C.-C. Wen, and W. Fang, "Tuning the sensing range and sensitivity of three axes tactile sensors using the polymer composite membrane," Sensors and Actuators A: Physical, vol. 145-146, pp. 14-22, 2012.
[42] C.-M. Sun, C. Wang, M.-H. Tsai, H.-S. Hsieh, and W. Fang, "Monolithic integration of capacitive sensors using a double-side CMOS MEMS post process," Journal of Micromechanics and Microengineering, vol. 19, p. 015023, 2009.
[43] K.-Y. Lee, J.-T. Huang, H.-J. Hsu, M.-C. Chiu, T.-C. Tsai, and C.-K. Chen, "CMOS-MEMS piezoresistive force sensor with scanning signal process circuit for vertical probe card," Sensors and Actuators A: Physical, vol. 160, pp. 22-28, 2010.
[44] H.-H. Wang, C.-W. Hsu, W.-H. Liao, L.-J. Yang, and C.-L. Dai, "Micro pressure sensors of 50um size fabricated by a standard CMOS foundry and a novel post process," IEEE MEMS, Istanbul, Turkey, pp. 578-581, 2006.
[45] Nation Chip Implementation Center, http://www.cic.org.tw/
[46] M.-H. Tsai, C.-M. Sun, Y.-C. Liu, C. Wang, and W. Fang, "Design and application of a metal wet-etching post-process for the improvement of CMOS-MEMS capacitive sensors," Journal of Micromechanics and Microengineering, vol. 19, p. 105017, 2009.
[47] Y. Kanda, "Piezoresistance effect of silicon," Sensors and Actuators A: Physical, vol. 28, pp. 83-91, 1991.
[48] E.-S. Hwang, J.-H. Seo, and Y.-J. Kim, "A polymer-based flexible tactile sensor for normal and shear load detection," IEEE MEMS, Istanbul, Turkey, pp. 714-717, 2006.
[49] J. Detry, D. Koneval, and S. Blackstone, "A comparison of piezoresistance in polysilicon laser recrystallization polysilicon and single crystal silicon," Transducers, Philadelphia, PA, pp. 278-280, 1985.
[50] R.S. Figliola, and D.E. Beasley, Theory and Design for Mechanical Measurements, 5th Edition. Hoboken, New Jersey, John Wiley & Sons, Inc., 2010.
[51] Cheng Chao-Lin, Chang Heng-Chung, I. Chang Chun, and Fang Weileun, "Development of a CMOS MEMS pressure sensor with a mechanical force-displacement transduction structure," Journal of Micromechanics and Microengineering, vol. 25, p. 125024, 2015.
[52] G. Zhang, H. Xie, L. E. de Rosset, and G. K. Fedder, "A lateral capacitive CMOS accelerometer with structural curl compensation," IEEE MEMS Orlando, FL, pp. 606-611, 1999.
[53] E. H. Klaassen, R. J. Reay, C. Storment, and G. T. A. Kovacs, "Micromachined thermally isolated circuits," Sensors and Actuators A: Physical, vol. 58, pp. 43-50, 1997.
[54] ANSYS, http://www.ansys.com/
[55] R. N. Palchesko, L. Zhang, Y. Sun, and A. W. Feinberg, "Development of polydimethylsiloxane substrates with tunable elastic modulus to study cell mechanobiology in muscle and nerve," PLOS ONE, vol. 7, p. e51499, 2012.
[56] G. K. Fedder, "CMOS-based sensors," IEEE Sensors, Miami Beach, FL, pp. 125-128, 2005.
[57] K. Biswas, and S. Kal, "Etch characteristics of KOH, TMAH and dual doped TMAH for bulk micromachining of silicon," Microelectronics Journal, vol. 37, pp. 519-525, 2006/06/01/ 2006.
[58] T. Muller, T. Feichtinger, G. Breitenbach, M. Brandl, O. Brand, and H. Baltes, "Industrial fabrication method for micromechanical structures arbitrarily shaped silicon N-well," IEEE MEMS, Salt Lake City, UT, pp. 240-245, 1998.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *