帳號:guest(18.217.46.173)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):程瑾文
作者(外文):Cheng, Chin-Wen
論文名稱(中文):泛用型虛實整合系統架構建立─ 以液靜壓節流器之調整為驗證載具
論文名稱(外文):Construction of a Cyber-Physical System – Using a Linear Stage Assembled with Various Types of Hydrostatic Restrictors for Verification
指導教授(中文):宋震國
指導教授(外文):Sung, Cheng-Kuo
口試委員(中文):成維華
張禎元
口試委員(外文):Cheng, Wei-Hua
Chang, Jen-Yuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:104033591
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:167
中文關鍵詞:虛實整合系統數位化液靜壓軸承系統整合蒙地卡羅模擬
外文關鍵詞:Cyber physical systemDigitizationHydrostatic bearingSystem integrationMonte Carlo Simulation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:215
  • 評分評分:*****
  • 下載下載:25
  • 收藏收藏:0
本文設計一種泛用型虛實整合系統之架構,並將其運用於液靜壓軸承系統之元件設計與性能改善。本文之特點有三:其一、本架構之範圍涵蓋整個設計端到使用端,強調每一個階段所進行之決策與系統表現皆能成為往後對整體設計進行優化之依據。其二、在虛擬系統的建構上,本文探討利用傳統軟體程式語言與近年來發展之硬體描述語言之不同性質並納入時序之概念,於不同需求下結合兩者的不同優勢,使本文架構中之數據分析方式具有更多的可能性。其三、本文架構以本研究室較具經驗的液靜壓軸承研究為載具,除了驗證本架構的可行性以外,希望能進一步對該液靜壓系統進行分析、優化,挖掘虛實整合系統的實際應用價值,提供傳統產業新的可能性。
本文之虛擬系統建立部分,依照不同使用階段所需使用的分析方式與工具將重要參數分類,在簡化虛擬模型之複雜度的同時增強其未來之拓展能力。本文將設計到生產端分成靜態、動態、容差以及感測控制等四大分類,分別設計並建立相對應之模組後使其相互連結,進而完成虛擬系統本身之整合。
真實系統建立部分,則架設一小型液靜壓線性實驗平台,結合不同的節流器並觀察其性能表現。固定式節流器的研究時間最長,理論也最完善,適合進行本文虛實整合系統架構之驗證;而自補償節流器則可透過虛實整合系統之分析得到更有依據的設計優化與調校方式。
透過本論文,希望能結合不同領域之長處,提供設計者另一種不同的思考方式。
A cyber physical system (CPS) is an integration of computers and physical systems. In a CPS, the physical system is integrated with sensing, communication, and computing components.
This research aims at constructing a framework for the cyber physical system, including a virtual system as well as a physical system. To demonstrate the capability of the constructed cyber physical system, we designed an experiment platform of a hydrostatic linear stage as the real physical system. Within the virtual system, we constructed the simulation model for each component, which was able to characterize the feature of the physical system.
To reduce the complexity, the system model of each component was categorized into four major properties: static, dynamic, tolerancing design, and sensing & controlling. Then, we established the corresponding module to describe each property. The static module included properties, for example, the geometries, materials and loading parameters, while the dynamic module stated the derived dynamic performance of the corresponding static properties. The tolerancing module predicted the final performance after considering manufacturing uncertainty. The sensors, actuators, and controller were included in the fourth module to communicate between the virtual and physical systems.
Using the CPS, we predicted the performance of the linear stage while designing, controlling, and maintaining the physical system after manufacturing. We will closely look into the extensibility of the framework; other advanced options may be added in the future.
摘要 I
Abstract II
誌謝 III
目錄 V
圖目錄 VIII
表目錄 XII
第一章 導論 1
1-1 研究背景 1
1-2 文獻回顧 3
1-2.1 虛實整合系統 3
1-2.2 大數據(Big Data)與物聯網(Internet of Things, IoT) 5
1-2.3 數據分析與決策方式──統計方法、優化與智能學習 6
1-2.4 液靜壓軸承 9
1-3 研究動機與本文內容 10
第二章 虛實整合系統架構設計 13
2-1 虛實整合系統之困境 13
2-2 整體架構─虛擬系統設計 19
2-2.1 靜態模組 23
2-2.2 動態模組 24
2-2.3 容差模組 26
2-2.4 感測與控制模組 27
2-2.5 模組間之溝通方式規劃 30
2-3 大數據之應用與智能分析手段 31
第三章 液靜壓軸承理論公式─真實系統分析 36
3-1 液靜壓軸承流阻計算方式整理 39
3-1.1 毛細管節流器 39
3-1.2 溝槽型節流器 41
3-1.3 油墊與自補償節流封油面流阻計算 44
3-2 液靜壓軸承單向墊流阻網路法分析 54
3-3 液靜壓單向墊軸承性能調整模擬 59
第四章 CPS應用於液靜壓系統-真實系統調校 64
4-1 過往研究困境與改善方式 64
4-2 虛擬系統建立 70
4-2.1 靜態模組部分建立 70
4-2.2 容差模組部分建立─採用蒙地卡羅法為分析工具 73
4-2.3 感測控制模組部分建立─資料擷取與控制器 78
4-2.4 動態模組部分建立─FPGA上之硬體描述模型 86
4-3 真實系統建立 96
4-3.1 液靜壓軸承小型實驗平台 96
4-3.2 感測器實體元件 99
4-4 實驗架設與結果分析 101
4-4.1 初步實驗結果整理 105
4-4.2 溝槽理論公式比較 107
4-4.3 公差造成之不確定性分析及改善 111
4-4.4 其他分析 118
第五章 結論與未來工作 122
5-1 結論 122
5-2 未來工作 124
5-3 其他討論 125
附錄 133
A. 液靜壓基本公式推導 133
I. 管流分析(運用於毛細管流阻計算) 134
II. 兩平行板間流場分析(運用於油墊方形封油面流阻計算) 137
III. 環形封油面之分析 139
B. 液靜壓單向墊系統網路流阻法公式推導 141
I. 固定式節流器搭配單向墊系統 141
II. 自補償節流器搭配單向墊系統 145
III. 複合式節流器搭配單向墊系統 156
C. 油溫黏性換算推導(根據ASTM D341[36]) 162
參考資料 164
[1] Tsai, Jinn-Tsong, et al. "Optimized positional compensation parameters for exposure machine for flexible printed circuit board." IEEE Transactions on Industrial Informatics 11.6 (2015): 1366-1377.
[2] Božičković, Ranko, et al. "Integration of simulation and lean tools in effective production systems–Case study." Strojniški vestnik-Journal of Mechanical Engineering 58.11 (2012): 642-652.
[3] Lee, Edward A. "Cyber physical systems: Design challenges." Object oriented real-time distributed computing (isorc), 2008 11th ieee international symposium on. IEEE, 2008.
[4] Lee, Edward A. "The past, present and future of cyber-physical systems: A focus on models." Sensors 15.3 (2015): 4837-4869.
[5] Mosterman, Pieter J., and Justyna Zander. "Cyber-physical systems challenges: a needs analysis for collaborating embedded software systems." Software & Systems Modeling 15.1 (2016): 5-16.
[6] Strategy, I. T. U., and Policy Unit. "ITU Internet Reports 2005: The internet of things." Geneva: International Telecommunication Union (ITU) (2005).
[7] 吳明欽,"看見物聯網在工業自動化的新未來",GCThings GS1 TW春季刊 (2011):15-23。
[8] Lee, Jay, Behrad Bagheri, and Hung-An Kao. "A cyber-physical systems architecture for industry 4.0-based manufacturing systems." Manufacturing Letters 3 (2015): 18-23.
[9] Lee, Jay, Hung-An Kao, and Shanhu Yang. "Service innovation and smart analytics for industry 4.0 and big data environment." Procedia Cirp 16 (2014): 3-8.
[10] 劉大銘, 鄭蕉杏. "蒙地卡羅模擬應用在裝配不良率導向的公差分析." Journal of Science and Engineering Technology 2.4 (2006): 67-82.
[11] 鄭蕉杏,"公差分析之研究",大葉大學機械工程研究所碩士論文,2005。
[12] 陳正斌,"基因演算法在公差分析上的應用",大葉大學機械工程研究所碩士論文,2005。
[13] 葉怡成, 吳沛儒. "基於類神經網路與交叉驗證法之田口方法." 品質學報 16.4 (2009): 261-279.
[14] 陳相弦,洪宗仁,余志成,"應用柔性演算法於穏健最佳化設計",中國機械工程學會第十八屆全國學術研討會,電腦輔助設計論文集,台灣科技大學,2001。
[15] Girard, L. D., "Application des Surfaces Glissantes, Bachelier, "Paris, 1862.
[16] Reynolds, Osborne. "XXVIII. On the flow of gases." The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 21.130 (1886): 185-199.
[17] Malanoski, Stanley B., and Alfred M. Loeb. "The effect of the method of compensation on hydrostatic bearing stiffness." Journal of Basic Engineering 83.2 (1961): 179-185.
[18] Ling, Marvin TS, "On the optimization of the stiffness of externally pressurized bearings." Trans. ASME. J. Basic Eng 84 (1962): 119-122.
[19] O'Donoghue, J. P. "Parallel orifice and capillary control for hydrostatic journal bearings." Tribology 5.2 (1972): 81-82.
[20] Sharma, Satish C., et al. "Comparative study of the performance of six-pocket and four-pocket hydrostatic/hybrid flexible journal bearings." Tribology international 28.8 (1995): 531-539.
[21] Sharma, Satish C., et al. "Performance of hydrostatic/hybrid journal bearings with unconventional recess geometries." Tribology transactions 41.3 (1998): 375-381.
[22] Mohsin, M. E. "The use of controlled restrictors for compensating hydrostatic bearings." Proceedings of the third international machine tool design research conference, University of Birmingham. Vol. 429. 1963.
[23] Mayer, J. E., and M. C. Shaw. "Characteristics of an externally pressurized bearing having variable external flow restrictors." Journal of Basic Engineering 85.2 (1963): 291-296.
[24] Rowe, W. B., and ODONOGHU. JP. "Diaphragm valves for controlling opposed pad hydrostatic bearings." INDUSTRIAL LUBRICATION AND TRIBOLOGY. Vol. 22. No. 8. 60/62 TOLLER LANE, BRADFORD BD8 9BY, W YORKSHIRE, ENGLAND: MCB UNIV PRESS LTD, 1970.
[25] Rowe, W. B., "Hydrostatic and hybrid bearing design, " Butterworths pressed, 1983.
[26] OHSUMI, T., H. Mori, and K. Ikeuchi. "EFFECTS OF STABILIZER ON INDICIAL RESPONSE OF SELF-CONTROLLED EXTERNALLY PRESSURIZED BEARING." JOURNAL OF JAPAN SOCIETY OF LUBRICATION ENGINEERS 30.3 (1985): 186-193.
[27] Morsi, S. A. "Passively and actively controlled externally pressurized oil-film bearings." Journal of Lubrication Technology 94.1 (1972): 56-63.
[28] Tully, N. "Static and dynamic performance of an infinite stiffness hydrostatic thrust bearing." Trans. ASME, Ser. F 99 (1977): 106.
[29] National Instruments, "NI LabVIEW for CompactRIO Developer’s Guide," Chapter1 (2014)
[30] Slocum, Alexander H. "„Precision Machine Design Prentice Hall Inc." Dear born, Michigan (1992)
[31] Fox & McDonald, "Fluid Mechanics," 8ED, John Wiley & Sons Inc. (2012)
[32] Huebscher, R. G. "Friction equivalents for round, square and rectangular ducts." ASHVE Transactions (renamed ASHRAE Transactions) 54 (1948): 101-144.
[33] Bruus, H. "Theoretical microfluidics. Oxford master series in condensed matter physics." (2008).
[34] 鍾洪,張冠坤,"液體靜壓動靜壓軸承設計使用手冊",電子工業出版社(2007):30
[35] 王翊丞, "液靜壓軸承複合型節流裝置設計與實驗", 國立清華大學動力機械系碩士論文,2015。
[36] 盧佳崴,"新型主動式補償液靜壓軸承設計及實驗驗證",國立清華大學動力機械系碩士論文,2012。
[37] ASTM D 341-03, "Standard Test Method for Viscosity-Temperature Charts for Liquid Petroleum Products"
[38] Glasserman, Paul, and David D. Yao. "Some guidelines and guarantees for common random numbers." Management Science 38.6 (1992): 884-908.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *