帳號:guest(18.217.239.90)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林政學
作者(外文):Lin, Cheng-Hsueh
論文名稱(中文):搖籃式液靜壓旋轉工作台設計
論文名稱(外文):A Hydrostatic Tilting Rotary Table Design
指導教授(中文):宋震國
指導教授(外文):Sung, Cheng-Kuo
口試委員(中文):成維華
張禎元
口試委員(外文):Chieng, Wei-Hua
Chang, Jen-Yuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:104033576
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:88
中文關鍵詞:液靜壓軸承節流器流阻網路法有限差分法
外文關鍵詞:Hydrostaticbearingrestrictorslumpedmethodfinitedifference
相關次數:
  • 推薦推薦:0
  • 點閱點閱:511
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本文設計一套高負載、高剛性、低轉速之搖籃式液靜壓旋轉工作台,藉由分析及評估實際加工情形,選擇性能表現為最佳之液靜壓軸承構型,並將其製作以實驗研究之,探討分析其相關的誤差參數及機台性能表現。
在理論方面,首先計算液靜壓軸承中封油面之流阻值,藉由設計軸承油腔內部壓力與供給壓力之壓力比,使油膜剛性能達到最大;接著探討在液靜壓軸承系統中,使用定壓之液靜壓雙向墊軸承的承載力,並求出其油膜剛性表現;另外利用有限差分法,求出油膜在各偏心狀態下的壓力分佈,並在液靜壓軸承的設計過程中,慎重考量不同節流器流阻、油膜厚度、封油面尺寸、流體黏滯係數、總流體流量等設計參數,提供最佳的剛性及承載力,並模擬結構變形所造成的誤差,以利於設計時能更準確評估液靜壓軸承之性能。
於發包製作後,搭配壓力感測器量測油腔壓力及供油系統設備,規劃測試現有搖籃式液靜壓工作旋轉台的方法及步驟,量測不同負載下,油腔內部的壓力變化,並與理論模擬相互驗證,檢討可能的誤差參數,提出改進之方法以提高性能表現。
This thesis is aimed to design and fabricate a hydrostatic tilting rotary table with high loading capacity, high stiffness. According to the desired performance specifications and its application, we selected the proper type of hydrostatic bearing and analyzed the performance by experiments.
This study started from design based on the desired performance and focused on calculating the flow resistance of the pockets and restrictors to obtain the optimal pressure ratio between the source and the pocket, which resulted in the required bearing stiffness. Secondly, this study determined the number and dimensions of the pockets to gain the desired load capacity of the single-pad and the opposed-pad hydrostatic bearings. In addition, this thesis inspected the pressure distribution of oil film under eccentric condition by using finite difference method and obtained the essential parameters such as resistance, the oil film thickness, the land dimension, the oil viscosity, the total flow.
Finally, the hydrostatic tilting rotary table was examined by using sensors and oil supply system, and compared the actual performance with the theoretical prediction to explore the possible parameters of error and present a method to improve the performance of hydrostatic tilting rotary table.
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 XII
符號表 XIII
第一章 導論 1
1-1 研究背景 1
1-2 文獻回顧 3
1-2-1 液靜壓軸頸軸承之研究 3
1-2-2 不同節流液靜壓軸承之研究 5
1-3 研究動機與本文內容 6
第二章 理論分析 8
2-1 基礎理論 8
2-2 模擬方法 11
2-2-1 流阻網路法 11
2-2-2 有限差分法 15
2-3 液靜壓軸承油膜溫度變化 20
第三章 搖籃式液靜壓旋轉工作台設計 22
3-1 液靜壓軸承設計流程 22
3-2 液靜壓軸承結構尺寸設計 23
3-2-1 軸頸軸承 23
3-2-2 止推軸承 26
3-3 節流器設計 28
3-4 整體構型設計 30
3-5 傳動系統選用與配置 33
第四章 液靜壓軸承性能模擬與評估 35
4-1 結構變形模擬分析 35
4-2 系統剛性與承載力模擬分析 38
4-2-1 理想軸承性能 38
4-2-2 結構變形對軸承性能之影響 40
4-2-3 加工誤差對軸承性能之影響 41
4-3 油膜壓力分佈模擬分析 42
4-4 流量變化分析 46
4-5 溫度變化與功耗分析 47
第五章 實驗研究 50
5-1 液靜壓軸承系統實驗架構 50
5-1-1 實驗架設 50
5-1-2 搖籃式液靜壓旋轉工作台 52
5-2 實驗與量測設備 55
5-2-1 供油設備系統 55
5-2-2 量測設備 57
5-3 實驗方法與步驟 62
5-4 實驗結果 65
5-4-1 油品黏度實驗結果 65
5-4-2 節流器流阻實驗結果 68
5-4-3 軸承剛性實驗結果 69
第六章 結論與未來工作 82
6-1 結論 82
6-2 未來工作 83
參考文獻 86

[1] Girard, L. D. (1862). Application des Surfaces Glissantes. Paris.
[2] Raimondi, A. A., & Boyd, J. (1957). An Analysis of Orifice and Capillary Compensated Hydrostatic Journal Bearing. Lubr. Eng, 13(1), 28-37.
[3] Mori, H., & Yabe, H., (1963). A theoretical investigation on hydrostatic bearing. Bull. JSME, 6(22), 354-363.
[4] O’Donoghue, J. P., & Rowe, W. B. (1968). Hydrostatic journal bearing (exact procedure). Tribology, 1(4), 230-236.
[5] O’Donoghue, J. P., & Rowe, W. B. (1969). Hydrostatic bearing design. Tribology International, 2(1), 25-71.
[6] Rowe, W. B., O’Donoghue, J. P., & Cameron, A. (1970). Optimization of externally pressurized bearings for minimum power and low temperature rise. Tribology, 3(3), 153-157.
[7] Ghosh, B. (1972). An Exact Analysis of a Hydrostatic Journal Bearing with a Large Circumferential Sill. Wear, 21(2), 367-375.
[8] Ghosh, B. (1973). Load and Flow Characteristic of Capillary-compensated Hydrostatic Journal Bearing. Wear, 23(3), 377-386.
[9] Singh, D. V., Sinhasan, R., & Ghai, R. C. (1976). Finite element analysis of orifice compensated hydrostatic journal bearings. Tribology International, 9(6), 281-284.
[10] Majumdar, B. C., & Ghosh, B. (1980). Design of multirecess hydrostatic oil journal bearing. Tribology International, 13(2), 73-78.
[11] Yuichi Sato, & Ogiso Satosho (1983). Load capacity and stiffness of misaligned hydrostatic recessed journal bearings. Wear, 92(2), 231-241.
[12] EI-Sherbiny, M., Salam, F., & EI-Hefnawy, N. (1984). Optimum design of hydrostatic journal bearing: II. Minimum power. Tribology International, 17(3), 162-166.
[13] Sharma, S. C., Jain, S. C., Sinhasan, R., & Shalia, R. (1995). Comparative study of the performance of six-pocket and four-pocket hydrostatic-hybrid flexible journal bearings. Tribology International, 28(8), 531-539.
[14] Sharma, S. C., Sinhasan, R., Jain, S. C., Singh, N., & Singh, S. K. (1998). Performance of hydrostatic/hybrid journal bearings with unconventional recess geometries. Tribology Transactions, 41(3), 375 – 381.
[15] Malanoski S. B., & Loeb A. M. (1961). The effect of the method compensation on hydrostatic bearing stiffness. Transaction of the ASME, Journal of Basic Engineering, 83(2), 179-187.
[16] Ling, T. S. (1962). On the optimization of the stiffness of externally pressurized bearings. Transaction of the ASME, Journal of Basic Engineering, 84(1), 119-122.
[17] Mohsin, M.E. (1962). The Use of Controlled Restrictors for Compensating Hydrostatic Bearing. Third International Conference on Machine Tool Design Research, 129-424.
[18] Mayer, J. E., & Shaw, M. C. (1963). Characteristics of Externally Pressurized Bearing Having Variable External Flow Restrictors. ASEM Journal of Basic Engineering, 85(2), 291-296.
[19] Rowe, W. B., & O’Donoghue, J.P. (1970). Diaphragm Valves for Controlling Opposed Pad Hydrostatic Bearing. Tribology convention, 184(Pt-3L), 1-9.
[20] O’Donoghue, J. P. (1972). Parallel orifice and capillary control for hydrostatic journal bearings. Tribology, 5(2), 81-82.
[21] Moris, S. A. (1972). Passively and Actively Controlled Externally Pressurized Oil-film Bearing. Transaction of the ASME, Journal of Lubrication Technology, 94(1), 56-63.
[22] Rowe, W. B. (1983). Hydrostatic and hybrid bearing design. Walthem: Butterworths.
[23] Shinkle, J. N., & Hornung, K. G. (1965). Frictional Characteristics of Liquid Hydrostatic Journal Bearings. Transaction of the ASEM, Journal of Basic Engineering, 87(2), 163-168.
[24] Slocum, A. H. (1992). Precision Machine Design. New Jersey: Prentice Hall.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *