|
[1] Girard, L. D. (1862). Application des Surfaces Glissantes. Paris. [2] Raimondi, A. A., & Boyd, J. (1957). An Analysis of Orifice and Capillary Compensated Hydrostatic Journal Bearing. Lubr. Eng, 13(1), 28-37. [3] Mori, H., & Yabe, H., (1963). A theoretical investigation on hydrostatic bearing. Bull. JSME, 6(22), 354-363. [4] O’Donoghue, J. P., & Rowe, W. B. (1968). Hydrostatic journal bearing (exact procedure). Tribology, 1(4), 230-236. [5] O’Donoghue, J. P., & Rowe, W. B. (1969). Hydrostatic bearing design. Tribology International, 2(1), 25-71. [6] Rowe, W. B., O’Donoghue, J. P., & Cameron, A. (1970). Optimization of externally pressurized bearings for minimum power and low temperature rise. Tribology, 3(3), 153-157. [7] Ghosh, B. (1972). An Exact Analysis of a Hydrostatic Journal Bearing with a Large Circumferential Sill. Wear, 21(2), 367-375. [8] Ghosh, B. (1973). Load and Flow Characteristic of Capillary-compensated Hydrostatic Journal Bearing. Wear, 23(3), 377-386. [9] Singh, D. V., Sinhasan, R., & Ghai, R. C. (1976). Finite element analysis of orifice compensated hydrostatic journal bearings. Tribology International, 9(6), 281-284. [10] Majumdar, B. C., & Ghosh, B. (1980). Design of multirecess hydrostatic oil journal bearing. Tribology International, 13(2), 73-78. [11] Yuichi Sato, & Ogiso Satosho (1983). Load capacity and stiffness of misaligned hydrostatic recessed journal bearings. Wear, 92(2), 231-241. [12] EI-Sherbiny, M., Salam, F., & EI-Hefnawy, N. (1984). Optimum design of hydrostatic journal bearing: II. Minimum power. Tribology International, 17(3), 162-166. [13] Sharma, S. C., Jain, S. C., Sinhasan, R., & Shalia, R. (1995). Comparative study of the performance of six-pocket and four-pocket hydrostatic-hybrid flexible journal bearings. Tribology International, 28(8), 531-539. [14] Sharma, S. C., Sinhasan, R., Jain, S. C., Singh, N., & Singh, S. K. (1998). Performance of hydrostatic/hybrid journal bearings with unconventional recess geometries. Tribology Transactions, 41(3), 375 – 381. [15] Malanoski S. B., & Loeb A. M. (1961). The effect of the method compensation on hydrostatic bearing stiffness. Transaction of the ASME, Journal of Basic Engineering, 83(2), 179-187. [16] Ling, T. S. (1962). On the optimization of the stiffness of externally pressurized bearings. Transaction of the ASME, Journal of Basic Engineering, 84(1), 119-122. [17] Mohsin, M.E. (1962). The Use of Controlled Restrictors for Compensating Hydrostatic Bearing. Third International Conference on Machine Tool Design Research, 129-424. [18] Mayer, J. E., & Shaw, M. C. (1963). Characteristics of Externally Pressurized Bearing Having Variable External Flow Restrictors. ASEM Journal of Basic Engineering, 85(2), 291-296. [19] Rowe, W. B., & O’Donoghue, J.P. (1970). Diaphragm Valves for Controlling Opposed Pad Hydrostatic Bearing. Tribology convention, 184(Pt-3L), 1-9. [20] O’Donoghue, J. P. (1972). Parallel orifice and capillary control for hydrostatic journal bearings. Tribology, 5(2), 81-82. [21] Moris, S. A. (1972). Passively and Actively Controlled Externally Pressurized Oil-film Bearing. Transaction of the ASME, Journal of Lubrication Technology, 94(1), 56-63. [22] Rowe, W. B. (1983). Hydrostatic and hybrid bearing design. Walthem: Butterworths. [23] Shinkle, J. N., & Hornung, K. G. (1965). Frictional Characteristics of Liquid Hydrostatic Journal Bearings. Transaction of the ASEM, Journal of Basic Engineering, 87(2), 163-168. [24] Slocum, A. H. (1992). Precision Machine Design. New Jersey: Prentice Hall.
|