帳號:guest(3.145.184.164)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):邱彥齊
作者(外文):Chiu, Yen-Chi
論文名稱(中文):雷射切割玻璃基板熱應力之探討
論文名稱(外文):Investigation of Thermal Stresses in Glass Substrates by Laser Cutting
指導教授(中文):王偉中
指導教授(外文):Wang, Wei-Chung
口試委員(中文):蔡宏營
羅裕龍
口試委員(外文):Tsai, Hung-Yin
Lo, Yu-Lung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:104033571
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:112
中文關鍵詞:反射式光彈法應力強度因子移動式熱源熱權函數熱破裂法
外文關鍵詞:Reflective PhotoelasticityStress Intensity FactorMoving Heat SourceThermal Weight FunctionThermal Fracture
相關次數:
  • 推薦推薦:0
  • 點閱點閱:160
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究首次使用反射式光彈法量測以CO2雷射切割玻璃之全場應力,並以光彈影像搭配待定係數法得到裂片過程中裂紋尖端的應力強度因子(Stress Intensity Factor, SIF),再藉由SIF和裂片速度之趨勢提出一套於固定雷射功率下預估最高裂片速度的方法。實驗結果顯示當雷射功率為25 W、雷射光點直徑為6.5 mm及玻璃厚度為0.55 mm時能夠成功裂片的最高速度為51 mm/s,而以此方法預估所得之最高裂片速度為54.4 mm/s,與實驗結果之差異量僅有6.67 %,顯示本研究提出之方法具有相當的準確性,可應用於實際加工以減少裂片失敗的材料和時間成本。
本研究亦將雷射光點視為移動式熱源,以其造成的溫度場搭配熱權函數(Thermal Weight Function)計算裂片過程中SIF的理論值,並且和實驗得到之SIF比較。結果顯示以熱權函數推得之SIF比透過實驗得到之SIF小了數十倍,其原因為熱權函數理論中的部分假設與現實情況不符,而本研究之實驗結果亦可作為修改理論之參考,以期於未來達到更好的預測結果。
In this thesis, reflective photoelasticity was first used to measure the whole-field stresses produced by CO2 laser cutting on glass substrates. Stress intensity factor (SIF) was extracted from reconstructed photoelastic images. Based on the relationship between SIF and cleaving velocity, a method was proposed to predict the highest cleaving velocity under fixed laser power. When laser power was 25 W, diameter of the laser spot was 6.5 mm and thickness of the glass specimen was 0.55 mm, the highest cleaving velocity predicted by this method was 54.4 mm/s, whereas the experimental result was 51 mm/s. This 6.67 % difference between the predicted and experimental results indicates the potential of this method to be applied in manufacturing to reduce time and material cost.
By taking the laser as a moving heat source, thermal weight function was also used to calculate the SIF and the calculated SIFs were compared with experimental ones. Results show that the calculated SIFs are ten times lower than the experimental ones. The significant difference may be due to the deviation from the real laser applications in the assumptions made in the thermal weight function. The experimental results obtained in this thesis can therefore be used as a good reference to modify the thermal weight function of calculating SIF.
一、 簡介 1
二、 文獻回顧 5
三、 實驗原理 10
3.1 光彈法 10
3.1.1 穿透式光彈法[8, 15] 10
3.1.2 反射式光彈法[15] 12
3.1.3 加強曝光理論[16, 33] 14
3.2 雷射切割 15
3.2.1 溫度場分布[7, 28] 16
3.2.2 熱權函數[7, 34, 35, 36] 18
3.3 以光彈法量測SIF 22
3.3.1 待定係數法[11, 38] 22
四、 實驗試片與裝置 27
4.1 實驗試片 27
4.2 實驗裝置 27
4.2.1 使用三腳架架設之反射式光彈儀 27
4.2.2 使用鋁擠型架設之反射式光彈儀 29
五、 實驗量測與分析 32
5.1 實驗量測程序 32
5.1.1 使用更改前之架設量測 32
5.1.2 使用更改後之架設量測 33
5.2 實驗分析程序 34
5.2.1 全場應力分析 34
5.2.2 光彈影像重建 35
六、 結果與討論 37
6.1 試片量測結果 37
6.1.1 更改架設前之量測結果 37
6.1.2 更改架設後之量測結果 39
6.2 雷射功率對裂片的影響 41
6.2.1 雷射功率隨時間的變化 41
6.3 光彈影像重建 43
6.4 SIF 46
6.4.1 由重建結果得到之SIF 46
6.4.2 以熱權函數計算所得之SIF 49
七、 結論與未來展望 52
7.1 結論 52
7.2 未來展望 54
八、 參考文獻 56
[1] J. Powell, “CO2 Laser Cutting,” Springer-Verlag, London, U. K., 1993.
[2] 陳坤坐、古淳仁、李閔凱、邱慶龍,“次世代玻璃基板切割與邊緣加工”,雷射光谷推動促進網,第1-3 頁,2014。
[3] R. Gy, “Ion Exchange for Glass Strengthening,” Materials Science and Engineering: B, Vol. 149, Issue 2, pp. 159-165, 2008.
[4] H. Ogi, T. Furumoto, T. Koyano, A. Hosokawa, “Study on Thermal Stress Cleavage of Chemically Strengthened Glass by CO2 Laser Beam,” Procedia CIRP, Vol. 42, pp. 460-463, 2016.
[5] 林子翔,“雷射熱破裂技術於切割脆性材料之模擬分析”,國立中山大學機械與機電工程學系碩士班碩士論文,2010。
[6] 王偉中、宋泊錡、沈明興、洪德恆、朱駿逸,“顯示器玻璃基板殘餘應力與厚度不均與Mura現象間之光測力學探討”,行政院國家科學委員會專題研究計畫,計畫編號:NSC 102-2221-E007-041,執行期間:2012/08/01~2013/07/31。
[7] 鄭源傑、黃國政、吳文弘、許晉睿,“雷射應用於玻璃切割熱破壞理論模擬分析”,中國機械工程學會第二十三屆全國學術研討會論文集,論文編號:D6-035,2006
[8] R. D. Mindlin, “A Review of the Photoelastic Method of Stress Analysis I,” Journal of Applied Physics, Vol. 10, pp. 222-241, 1939.
[9] J. C. Maxwell, “On the Equilibrium of Elastic Solids,” Transactions of the Royal Society of Edinburgh, Vol. 20, pp. 87-120, 1853.
[10] E. G. Coker and L. N. G. Filon, “A Treatise on Photoelasticity,” Cambridge University Press, Cambridge, U. K., 1931.
[11] J. W. Dally and W. F. Riley, “Experimental Stress Analysis,” 3rd ed., McGraw-Hill, New York, U. S. A., 1991.
[12] F. W. Hecker and B. Morche, “Computer-Aided Measurement of Relative Retardations in Plane Photoelasticity,” Proceedings of the VIIIth International Conference on Experimental Stress Analysis, Amsterdam, The Netherlands, pp. 535-542, 1986.
[13] W. C. Wang and T. L. Chen, “Half-Fringe Photoelastic Determination of Opening Mode Stress Intensity Factor for Edge Cracked Strips,” Engineering Fracture Mechanics, Vol. 32, No. 1, pp. 111-122, 1989.
[14] G. M. Brown and J. L. Sullivan, “The Computer-Aided Holophotoelastic Method,” Experimental Mechanics, Vol. 30, pp. 135-144, 1990.
[15] 呂正雍,“反射式光彈法於玻璃基板應力量測之研究”,國立清華大學動力機械工程學系碩士論文,2015。
[16] 葉祐良,“應用加強曝光光彈法於曲面玻璃板應力之量測”,國立清華大學動力機械工程學系碩士論文,2016。
[17] W. Verheyen, A. Raes, J. P. Coopermans, J. L. Lambert, “Glass Cutting,” U.S. Patent No. 3,932,726, 1976.
[18] G. Staupendahl and P. Gerling, “Laser Material Processing of Glasses with Lasers,” SPIE, Vol. 3097, Lasers in Material Processing, pp. 670-676, 1997.
[19] M. R. Kasaai, V. Kacham, F. Theberge, S. L. Chin, “The Interaction of Femtosecond and Nanosecond Laser Pulses with the Surface of Glass,” Non-Crystalline Solids, Vol. 319, pp. 129-135, 2002.
[20] C. H. Tsai and C. S. Liou, “Fracture Mechanism of Laser Cutting with Controlled Fracture,” Journals of Manufacturing Science and Engineering, Vol. 125, pp. 519-528, 2003.
[21] S. Nisar, M. A. Sheikh, L. Li, S. Safdar, “Effect of Thermal Stresses on Chip-Free Diode Laser Cutting of Glass,” Optics and Laser Technology, Vol. 41, pp. 318-327, 2009.
[22] J. Jiao and X. Wang, “Cutting Glass Substrates with Dual-Laser Beams,” Optics and Lasers in Engineering, Vol. 47, pp. 860-864, 2009.
[23] L. J. Yang, Y. Wang, Z. G. Tian, N. Cai, “YAG Laser Cutting Soda-Lime Glass with Controlled Fracture and Volumetric Heat Absorption,” International Journal of Machine Tools and Manufacture, Vol. 50, pp. 849-859, 2010.
[24] S. Kubota, A. Saimoto, Y. Imai, “High-Speed Thermal Stress Cleaving by Moving Heat with Mist Cooling,” Acta Mechanica, Vol. 214, pp. 159-167, 2010.
[25] Y. Yan, L. Li, T. L. See, L. Ji, Y. Jiang, “ Laser Peeling of Ceramic and an Application for the Polishing of Laser Cut Surfaces,” European Ceramic Society, Vol. 33, pp. 1893-1905, 2013.
[26] K. C. Huang, W. T. Hsiao, C. H. Huang, R. L. Lin, J. L. Yeh, “The Laser Ablation Model Development of Glass Substrate Cutting Assisted with the Thermal Fracture and Ultrasonic Mechanisms,” Optics and Lasers in Engineering, Vol. 67, pp. 31-35, 2015.
[27] K. L. Wlodarczyk, A. Brunton, P. Rumsby, D. P. Hand, “Picosecond Laser Cutting and Drilling of Thin Flex Glass,” Optics and Lasers in Engineering, Vol. 78, pp. 64-74, 2016.
[28] D. Rosenthal, “Mathematical Theory of Heat Distribution During Welding and Cutting,” Welding Journal, Vol. 20, pp. 27-40, 1941.
[29] T. Rożnowski, “Moving Heat Source of Thermoelasticity,” Ellis Horwood Ltd, Market Cross House, Cooper Street, Chichester, West Sussex, PO19 1EB, England, 1989.
[30] K. Yamamoto, N. Hasaka, H. Morita, E. Ohmura, “Three-Dimensional Thermal Stress Analysis on Laser Scribing of Glass,” Precision Engineering, Vol. 32, pp. 301-308, 2008.
[31] B. S. Yilbas, A. F. M. Arif, B. J. A. Aleem, “Laser Cutting of Sharp Edge: Thermal Stress Analysis,” Optics and Lasers in Engineering, Vol. 48, pp. 10-19, 2010.
[32] H. L. Lee, W. L. Chen, W. J. Chang, M. I. Char, Y. C. Yang, “Numerical Analysis of Dual-Phase-Lag Heat Transfer for a Moving Finite Medium Subjected to Laser Heat Source,” Applied Mathematical Modeling, Vol. 40, pp. 4700-4711, 2016.
[33] 宋泊錡,“檢測材料應力與厚度創新光測力學方法之研究”,國立清華大學動力機械工程學系博士論文,2014。
[34] J. R. Rice, “Some Remarks on Elastic Crack-tip Stress Field,” International Journal of Solids and Structures, Vol. 8, pp. 751-758, 1972.
[35] C. H. Tsai and C. C. Ma, “Thermal Weight Function of Cracked Bodies Subjected to Thermal Loading,” Engineering Fracture Mechanics, Vol. 41, No. 1, pp. 27-40, 1992.
[36] T. L. Anderson, “Fracture Mechanics: Fundamentals and Applications,” 3rd ed., Taylor and Francis Group, Florida, U.S.A., 2005.
[37] Website: https://www.corning.com/content/dam/corning/microsites/csm/gorillaglass/PI_Sheets/CGG_PI_Sheet_Gorilla%20Glass%203.pdf
[38] M. L. Williams, “On the Stress Distribution at the Base of a Stationary Crack,” Journal of Applied Mechanics, Vol. 24, pp. 109-114, 1957.
[39] Website: https://www.corning.com/tw/
[40] Website: http://www.itrc.narl.org.tw/
[41] Website: http://lasers.coherent.com/lasers/avia-355-14
[42] MATLAB Help Handbook, The MathWorks, Inc.
[43] Website: http://www.edmundoptics.com/
[44] Website: https://www.thorlabs.com/
[45] Website: https://www.thorlabs.com/thorproduct.cfm?partnumber=
WPQ10M-473
[46] Website: https://www.ptgrey.com/
[47] Website: http://www.spectral.it/it/index.html
[48] 由國研院儀科中心蕭文澤博士提供
[49] Website: https://www.thorlabs.com/thorproduct.cfm?partnumber=
PM100D
[50] Website: https://schneiderkreuznach.com/de
[51] Website:https://ark.intel.com/zh-tw/products/38512/Intel-Core2-Quad-Processor-Q8400-4M-Cache-2_66-GHz-1333-MHz-FSB
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *