帳號:guest(3.144.23.97)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李宗樺
作者(外文):Li, Zong-Hua
論文名稱(中文):硫酸鈣人工骨水泥應用於3D列印成型參數之抗壓強度分析
論文名稱(外文):Compressive Strength Analysis of Calcium Sulfate Synthetic Bone Fabricated by 3D Printing Technology with Different Modeling Parameters
指導教授(中文):葉哲良
指導教授(外文):Yeh, Jer-Liang
口試委員(中文):黃國政
徐文慶
葉夢考
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:104033570
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:70
中文關鍵詞:硫酸鈣人工骨3D列印抗壓強度分析積層製造
外文關鍵詞:Calcium Sulfate Synthetic Bone3D printingCompressive strength test
相關次數:
  • 推薦推薦:0
  • 點閱點閱:343
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究透過3D列印技術來製造一具良好生物相容性且能夠支撐一定強度之人工替代骨實驗樣品,透過新開發的3D列印機台,來探討不同成形製造參數對工件抗壓強度的影響,最後選定具有高成形完整度、高強度之製造參數來進行抗壓測試分析,藉以進行3D製造與傳統工法強度差異之討論。
人體的骨頭主要成分為鈣和磷,所以多數的人工骨替代材料使用磷酸鈣和硫酸鈣作為基底去製作複合材料,硫酸鈣具有引骨性在植入人體骨缺損處後,鈣離子(Ca^(2+))會被人體所吸收且誘導新骨由此處形成,在骨頭生長完後直接融入其中,對人體負擔極小,因此選用硫酸鈣來做為本實驗的材料。
實驗步驟包含分析材料最佳水粉比、加水後溫升變化、以及本論文所探討的實驗製造參數不同所對應的抗壓強度;實驗結果顯示在硫酸鈣水粉比(water/powder ratio) 0.41 時做3D列印堆疊時,在成型過程中穩定不造成崩塌又具備一定強度,所量測的抗壓強度為5.83 MPa,比對人體自體骨(抗壓強度1.3 MPa)已具備能夠正常使用之強度,與現今在使用最強複合材料之人工骨(抗壓強度30 MPa),仍具有一段差距,因此在未來加入可以提高強度粉末材料例如:同樣具備生物相容性的磷酸鈣,利用其不容易溶於骨頭的特性,降解速度較慢,發展一可用於實際應用上的複合材料人工替代骨,配合3D列印技術之快速成型、節省耗材、客製化之優點,來對醫療產業做出一實質貢獻。
Abstract
This study uses 3D printing technology to produce a good biocompatibility sample and which has the ability to support the original use of human bone strength. The main components of human body bone are calcium and phosphorus, so we use the calcium sulfate as the bone substitute. The characteristics of such bone substitute for implantation of human bone defects is that the calcium will be absorbed by the body and induce new bone cell’s formation from the filling place. In view of the above, calcium sulfate is seen as the material in the study.
With the combination of artificial bone and the newly developed 3D printing machine, the influence of different forming parameters on the final workpiece strength is discussed, and the best manufacturing parameter is selected to discuss the strength of the finished product. The compressive test is according to the American Society for Testing and Materials and trying to compare the strength of traditional artificial bone sample and 3D prints sample. On the conclusion, we got the strength at 5.83 MPa. Compare to a human bone at 1.3 MPa, the calcium sulfate substitute is able to fit the usage of a human being. However, the composite substitute bone used in the surgery has the strength at 30 MPa or more, this 3D technology used for creating artificial bone is still a long way to go. In the future, we can add mixed powder like calcium phosphate, to increase the strength of the sample and elongation degradation time.
摘要 1
Abstract 2
圖目錄 5
表目錄 8
第一章 緒論 10
1.1前言 10
1.2研究動機與目的 10
1.2.1研究動機 10
1.2.2研究目的 11
1.3 論文架構 11
第二章 文獻回顧 12
2.1 3D列印研究發展 12
2.2骨移植材料 13
2.2.1自體骨移植 15
2.2.2同種異體骨移植 15
2.2.3人工骨材料 16
2.3硫酸鈣影響強度特性 18
第三章 實驗架構及流程設計 24
3.1 實驗系統 24
3.2實驗流程設計 25
3.3 3D列印工件之成型參數因果分析 26
3.4影像分析方法 30
3.5 美國材料和試驗協會抗壓測試 32
第四章 實驗結果與分析 35
4.1 實驗材料特性 35
4.2單層列印完整度分析 36
4.2.1噴頭孔徑對表面完整度分析 36
4.2.2噴頭移動速度對表面完整度分析 40
4.1.3噴頭高度對表面完整度分析 46
4.2.4噴水線間距對表面成型分析 49
4.3多層列印堆疊分析 50
4.3.1噴頭速度對工件強度影響分析 52
4.3.2鋪粉厚度參數對工件強度影響分析 57
4.4最佳化參數強度分析比對 58
第五章 結論 63
第六章 未來研究方向 65
參考文獻 67

[1] Monzón M., et al. Standardization in additive manufacturing: activities carried out by international organizations and projects. The international journal of advanced manufacturing technology, 76(5-8), 1111-1121. (2015).
[2] Uhrín, D., Bramham J., Winder S. J., and Barlow P. N. Simultaneous CT-13C and VT-15N chemical shift labelling: application to 3D NOESY-CH3NH and 3D 13C, 15N HSQC-NOESY-CH3NH. Journal of biomolecular NMR, 18(3), 253-259. (2000).
[3] Choi S., et al. Bone regeneration within a tailor-made tricalcium phosphate bone implant with both horizontal and vertical cylindrical holes transplanted into the skull of dogs. Journal of Artificial Organs, 12(4), 274-277. (2009).
[4] Pei P., et al. The effect of calcium sulfate incorporation on physiochemical and biological properties of 3D-printed mesoporous calcium silicate cement scaffolds. Microporous and Mesoporous Materials, 241, 11-20. (2017).
[5] 陳維塘.磷酸鈣骨水泥添加半水石膏之複合材料製備分析用於覆髓治療之研究. (2010).
[6] Barber S. R., et al. 3D-printed pediatric endoscopic ear surgery simulator for surgical training. International journal of pediatric otorhinolaryngology, 90, 113-118. (2016).
[7] Singh N., and Middendorf B. Calcium sulphate hemihydrate hydration leading to gypsum crystallization. Progress in Crystal Growth and Characterization of Materials, 53(1), 57-77. (2007)
[8] Nilsson M., et al. Biodegradation and biocompatability of a calcium sulphate-hydroxyapatite bone substitute. Bone & Joint Journal, 86(1), 120-125. (2004).
[9] 陳華等人. 硫酸钙骨内植入修復兔包容性骨缺損的力學分析. 中國整型外科雜誌, 16(5), 373-375. (2008).
[10] 聶洪崚等人. 醫用硫酸鈣作為人工骨替代的實驗研究. 貴州醫藥, 27(10), 938-941. (2003).
[11] 陳遠謙. 自體脛骨海綿骨移植術於顎骨重建與人工植牙的臨床應用; Autogenous Tibial Cancellous Bone Grafting: Applications in Jaw Bone Reconstruction and Implant Restoration. (1991).
[12] 鍾文宸. 自體齒移植的存活率, 牙根吸收及牙根黏連率的系統性回顧與統合分析. 臺北醫學大學牙醫學系碩博士班學位論文, 1-50. (2013).
[13] Tay B.K., Patel V.V. and Bradford D.S. Calcium sulfate–and calcium phosphate–based bone substitutes. Orthopedic Clinics, 30(4), 615-623. (1999).
[14] 黄長明 與王臻. 大段異體骨移植治療骨腫瘤. 中華骨科雜誌, 20(7), 406-409. (2000).
[15] Langlais F., et al. Long-term results of allograft composite total hip prostheses for tumors. Clinical orthopaedics and related research, 414, 197-211. (2003).
[16] 纪方等人. 同種異體骨複合人工關節置换治療骨腫瘤. 中國整型外科雜誌, 9(6), 554-556. (2002).
[17] Kuznetsova L. and Lomovskii O. Thermal breakdown of gypsum crystals. Inorganic Materials, 21(10). (1986).
[18] McConnell J., Astill D. and Hall P. The pressure dependence of the dehydration of gypsum to bassanite. Mineralogical Magazine, 51(361), 453-457. (1987).
[19] Lewry A. and Williamson J. The setting of gypsum plaster. Journal of materials science, 29(23), 6085-6090. (1994).
[20] Wiedeman H.G. and Rössler M. Thermo-optical and thermo-analytical investigations of gypsum (calcium sulfate-water). Thermochemical acta, 95(1), 145-153. (1985).
[21] Amathieu L. and Boistelle R. Crystallization kinetics of gypsum from dense suspension of hemihydrate in water. Journal of Crystal Growth, 88(2), 183-192. (1988).
[22] Jayaprakash K., et al. Impact of Water Quality and Water Powder Ratio on the Properties of Type 4-Die Stones (Gypsum Products) used in Dentistry. International Journal of Rehabilitation Sciences, 3(2), 75-81. (2014).
[23] Fairhurst C.W. Compressive properties of dental gypsum. Journal of dental research, 39(4), 812-824. (1960).
[24] Correia C.d.M.P. and Souza M.F.d. Mechanical strength and thermal conductivity of low-porosity gypsum plates. Materials Research, 12(1), 95-99. (2009).
[25] Strydom C. and Potgieter J. Dehydration behaviour of a natural gypsum and a phosphogypsum during milling. Thermochemical acta, 332(1), 89-96. (1999).
[26] Singh N. and Middendorf B. Calcium sulphate hemihydrate hydration leading to gypsum crystallization. Progress in Crystal Growth and Characterization of Materials, 53(1), 57-77. (2007).
[27] Hudson-Lamb D., Strydom C. and Potgieter J. The thermal dehydration of natural gypsum and pure calcium sulphate dihydrate (gypsum). Thermochemical acta, 282, 483-492. (1996).
[28] ASTM C472: Test Methods for Physical Testing of Gypsum. Gypsum Plasters and Gypsum Concrete. (2014).
[29] Ambard A.J. and Mueninghoff L. Calcium phosphate cement: review of mechanical and biological properties. Journal of Prosthodontics, 15(5), 321-328. (2006).
[30] Johnson K.L. and Johnson K.L. Contact mechanics: Cambridge university press. (1987).
[31] Toledo R. ExOne Direct Material Printing - Binder Jetting Technology. Retrieved from https://www.slideshare.net/RicardoToledo10/exone-direct-material-printing-binder-jetting-technology. (2015).
[32] J.O. corporation. 高強效人工骨. Retrieved from http://www.jocorp.com.tw /index.php/en/23-2014-10-28-08-32-57/63-ii. (2014).
[33] Feng K. and Shi Z. Mathematical theory of elastic structures: Springer Science & Business Media. (2013).
[34] Smirnov V., et al. Synthesis and properties of bone cement materials in the calcium phosphate–calcium sulfate system. Inorganic Materials, 53(10), 1075-1079. (2017).
[35] J.O. corporation. 硫酸鈣人工骨.Retrieved from http://www.jocorp.com.tw /index.php/en/32-2015-05-27-02-41-05/83-i. (2016).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *