帳號:guest(3.128.201.40)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林佳儒
作者(外文):Lin, Jia-Ru
論文名稱(中文):塗裝單壁奈米碳管鰭片熱電致冷晶片散熱效率與熱變形之研究
論文名稱(外文):Investigation of Heat-Dissipation Efficiency and Thermal Deformation of TECs with SWCNT Coated Heat Sink
指導教授(中文):王偉中
指導教授(外文):Wang, Wei-Chung
口試委員(中文):陳奕瑞
蔡宏營
口試委員(外文):Chen, Yi-Ray
Tsai, Hung-Yin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:104033565
出版年(民國):106
畢業學年度:106
語文別:中文
論文頁數:191
中文關鍵詞:熱電致冷器三維數位影像相關法單壁奈米碳管散熱鰭片
外文關鍵詞:Thermoelectric coolerThree dimensional digital image correlation methodSingle-walled carbon nanotubeHeat sink
相關次數:
  • 推薦推薦:0
  • 點閱點閱:153
  • 評分評分:*****
  • 下載下載:19
  • 收藏收藏:0
熱電致冷器(Thermoelectric Cooler, TEC)是一種將電能轉換為熱能的裝置,操作過程中存在溫度梯度形成冷面與熱面,因結構內各材料熱膨脹係數不匹配造成電子元件間互相牽制,經長時間反覆使用後,內部會產生熱應力與熱變形,易導致元件損壞。
本研究利用兩套三維數位影像相關(Three Dimensional Digital Image Correlation, 3D-DIC )應變量測系統,分別量測無加裝鰭片與有加裝鰭片之127對品牌A與品牌B之TEC試片表面與側面P型和N型半導體之變形。探討在不同電流下TEC的應變資訊,並利用應變資訊與溫度分布來探討TEC的品質。結果顯示所有TEC表面與側面之變形量,均隨著電流越大,應變越大。從應變量測系統中也可得到TEC試片應變分布狀況,並利用多組試片實驗,驗證了品牌B之TEC品質較佳。
為增加散熱率,使用單壁奈米碳管(Single-Walled Carbon Nanotube, SWCNT)均勻塗佈於鋁擠型散熱鰭片表面,成功提升鰭片散熱效果;提高TEC於加裝鋁擠型散熱鰭片使用時,所能負荷之最大電流。由變形方面得到加裝奈米碳管散熱鰭片之TEC整體應變量趨勢比加裝鋁擠型散熱鰭片小。由溫度方面也得知加裝奈米碳管散熱鰭片之TEC整體溫度趨勢下降。未來有可能利用奈米碳管散熱鰭片以取代散熱風扇用於中小電流TEC之使用,除了增加TEC的使用壽命,也可降低成本與減少電子元件受風扇振動之影響。
Thermoelectric cooler (TEC) is a device which converts electrical energy into heat energy. The primary principle of the TEC is the Peltier effect. Thermoelectric cooler is a sandwich structure consisting of many different materials. When a direct current is applied, thermal stress and thermal deformation are unavoidably produced in the TEC due to the temperature gradient. Moreover, due to the mismatch of thermal expansion coefficient between component materials of the TEC, the TEC may be out of work after an extended period of practice.
In this thesis, two sets of three dimensional digital image correlation (3D-DIC) systems were adopted to measure the deformation of two different TECs, i.e. TEC_A and TEC_B, of 127 pairs of p-type and n-type semiconductors with and without the heat sink, respectively. Strains of the TEC under different currents were measured, and the quality of the TEC was investigated by the strain and temperature distributions. Results showed that the strain becomes higher as the current increased. The quality of TEC_B was also found better based on results of the strain distribution.
To enhance the cooling effect, single-walled carbon nanotube (SWCNT) was used to coat on the surface of the heat sink, and the cooling effect of the heat sink was found successfully improved. The strain of the TEC is smaller when the SWCNT heat sink was added, and the overall temperature distribution was also decreased.
In the future, it is possible to use the SWCNT heat sink to replace the cooling fan for TECs under low and medium current. In addition to increase the service life of TECs, cost and the vibration produced from the cooling fan can also be reduced.
目錄 I
圖目錄 IV
表目錄 XV
一、 簡介 1
二、 文獻回顧 5
2.1 數位影像相關法 5
2.2 熱電致冷器/熱電能源產生器 9
2.2.1 熱電效應之發現 9
2.2.2 TEC結構與形變 10
2.2.3 TEC於散熱方面 12
2.3 奈米碳管熱傳導 14
三、 實驗原理 17
3.1 數位影像相關法原理 17
3.1.1 位移與變形[12, 51-53] 17
3.1.2 相關函數[13, 51-53] 19
3.1.3 數值方法[11, 13, 51, 53] 21
3.1.4 影像重建[14, 51, 53] 25
3.1.5 三維數位影像相關法[18, 51-52] 26
3.2 散熱鰭片理論[54] 30
3.2.1 散熱鰭片之性能 31
四、 試片規劃與實驗裝置 34
4.1 TEC試片規劃 34
4.1.1 雙面夾持之TEC試片 34
4.2 鋁擠型散熱鰭片 35
4.3 實驗裝置 35
4.3.1 DIC實驗裝置 35
4.3.2 奈米碳管散熱鰭片 37
4.3.3 其他實驗裝置 38
五、 實驗程序 40
5.1 試片前處理 40
5.1.1 TEC試片與散熱鰭片 40
5.1.2 奈米碳管散熱鰭片 41
5.2 實驗條件 42
5.2.1 鋁擠型散熱鳍片與奈米碳管散熱鰭片散熱溫度效率 42
5.2.2 TEC溫度、電流與DIC法量測之實驗條件 42
5.2.2.1 加裝散熱鰭片TEC試片 42
5.2.2.2 未加裝散熱片TEC試片 43
5.3 3D-DIC實驗程序 44
六、 結果與討論 46
6.1 鋁擠型與奈米碳管散熱鰭片散熱效率之關係 46
6.2 TEC搭配鋁擠型與奈米碳管散熱鰭片之散熱效率探討 48
6.2.1 探討冷熱面與溫度差與電流之關係 51
6.2.2 探討鋁擠型與奈米碳管散熱鰭片之熱阻差異率 55
6.3 TEC熱應變之探討 57
6.3.1 整體TEC應變之探討 58
6.3.2 比較單片TEC、加裝鋁擠型鰭片TEC與加裝奈米碳管鋁擠型鰭片TEC之關係 60
七、 結論與未來展望 63
7.1 結論 63
7.2 未來展望 65
參考文獻 67

[1] Website:http://www.peltier-info.com/photos.html
[2] Website:http://www.tande.com.tw/
[3] 朱旭山, “熱電材料與元件之原理與應用”, 電子與材料雜誌, Vol. 22, pp. 78-89, 2004.
[4] Y. L. Chang and W. C. Wang, “Thermal Deformation Measurement in Thermoelectric Coolers by ESPI”, Proceedings of SEM XI Congress on Experimental and Applied Mechanics, pp.162-171, Orlando, Florida, U. S. A., 2008
[5] 吳亭瑩, “熱電致冷器熱變形之實驗與數值探討”, 國立清華大學動力機械工程學系碩士論文, 2010.
[6] 陳建良, “熱電致冷器熱變形之探討”, 國立清華大學動力機械工程學系碩士論文, 2012.
[7] Website:http://goods.ruten.com.tw/item/show?21311100163885
[8] Private Communication, 2016年6月28日與致茂電子工程師游本懋與先生陳次郎先生商討內容
[9] 馬遠榮, “低維奈米材料”, 科學發展, Vol. 382, pp. 72-75, 2004.
[10] W. H. Peters and W. F. Ranson, “Digital Imaging Techniques in Experimental Stress Analysis,” Optical Engineering, Vol. 21, pp. 427-431, 1982.
[11] M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson and S. R. McNeill, “Determination of Displacements Using an Improved Digital Correlation Method,” Image and Vision Computing, Vol. 1, pp. 133-139, 1983.
[12] W. H. Peters, W. F. Ranson, T. C. Chu and J. Anderson, “Application of Digital Correlation Methods to Rigid Body Mechanics,” Optical Engineering, Vol. 22, pp. 738-742, 1983.
[13] T. C. Chu, W. F. Ranson, M. A. Sutton and W. H. Peters, “Applications of Digital-Image-Correlation Techniques to Experimental Mechanics,” Experimental Mechanics, Vol. 25, pp. 232-244, 1985.
[14] M. A. Sutton, M. Cheng, W. H. Peters, Y. J. Chao and S. R. Mcneill, “Application of an Optimized Digital Correlation Method to Planar Deformation Analysis,” Image and Vision Computing, Vol. 4, pp. 143-150, 1986.
[15] M. A. Sutton, S. R. McNeil, J. Jang and M. Babai, “Effect of Subpixel Image Restoration on Digital Image Correlation Estimates,” Optical Engineering, Vol. 27, pp. 870-877, 1988.
[16] H. A. Bruck, S. R. McNeill, M. A. Sutton and W. H. Peters, “Digital Image Correlation Using Newton-Raphson Method of Partial Differential Correlation,” Experimental Mechanics, Vol. 29, pp. 261-267, 1989.
[17] Z. L. Kahn-Jetter and T. C. Chu, “Three-Dimensional Displacement Measurements Using Digital Image Correlation and Photogrammic Analysis,” Experimental Mechanics, Vol. 30, pp. 10-16, 1990.
[18] P. F. Luo, Y. J. Chao, M. A. Sutton and W. H. Peters, “Accurate Measurement of Three-Dimensional Deformations in Deformable and Rigid Bodies Using Computer Vision,” Experimental Mechanics, Vol. 33, pp. 123-132, 1993.
[19] H. Lu and P. D. Cary, “Deformation Measurements by Digital Image Correlation: Implementation of a Second-Order Displacement Gradient,” Experimental Mechanics, Vol. 40, pp. 393-400, 2000.
[20] B. Pan, H. M. Xie, B. Q. Xu and F. L. Dai, “Performance of Sub-Pixel Registration Algorithms in Digital Image Correlation,” Measurement Science and Technology, Vol. 17, pp. 1615-1621, 2006.
[21] Y. Sun and J. H. L. Pang, “Digital Image Correlation For Solder Joint Fatigue Reliability in Microelectronics Packages,” Microelectronics Reliability, Vol. 48, pp. 310-318, 2008.
[22] N. Li, M. A. Sutton, X. Li and H.W. Schreier, “Full-field Thermal Deformation Measurements in a Scanning Electron Microscope by 2D Digital Image Correlation,” Experimental Mechanics, Vol. 48, pp. 635-646, 2008.
[23] M. A. Sutton, N. Li, D. C. Joy, A. P. Reynolds and X. Li, “Scanning Electron Microscopy for Quantitative Small and Large Deformation Measurements. Part II: Experimental Validation for Magnifications from 200 to 10,000”, Experimental Mechanics, Vol. 47, pp. 775-787, 2007.
[24] B. Pan, H. M. Xie, H. Tao and A. Asundi, “Measurement of Coefficient of Thermal Expansion of Films Using Digital Image Correlation Method,” Polymer Testing, Vol. 28, pp. 75-83, 2009.
[25] M. Pankow, B. Justusson and A. M. Waas, “Three-Dimensional Digital Image Correlation Technique Using Single High-Speed Camera for Measuring Large Out-of-Plane Displacements at High Framing Rates,” Applied Optics, Vol. 49, pp. 3418-3427, 2010.
[26] L. Felipe-Sesé, P. Siegmann, F. A. Díaz and E. A. Patterson, “Simultaneous In-and-Out-of-Plane Displacement Measurements Using Fringe Projection and Digital Image Correlation,” Optics and Lasers in Engineering, Vol. 52, No. 1, pp. 66-74, 2014.
[27] W. Thomson, “On a Mechanical Theory of Thermo-Electric Currents,” Proceedings of the Royal Society of Edinburgh, Vol. 3, pp. 91-98, 1857.
[28] H. J. Goldsmid and R. W. Douglas, “The Use of Semiconductors in Thermoelectric Refrigeration,” British Journal of Applied Physics, Vol. 5, pp. 386-390, 1954.
[29] 李明展, “碲化鉍與碲化銻薄膜之電化學沉積與微熱電致冷器應用”, 國立中山大學電機工程學系碩士論文, 2006.
[30] 鄭建明, “散熱器對熱電致冷器冷卻性能影響探討”, 國立中興大學機械工程學系碩士論文, 2007.
[31] 王文琳, “電化學法製備熱電致冷器之Bi2Te3薄膜及奈米線之研究”, 國立清華大學化學工程學系博士論文, 2008.
[32] 張育瑋, “熱電致冷散熱模組理論分析及實驗研究”, 國立臺灣大學機械工程學系博士論文, 2009.
[33] Y. M. Tan, W. Fan, K. M. Chua, Z. F. Shi and C. K. Wang, “Fabrication of Thermoelectric Cooler for Device Integration,” Proceedings of Electronics Packaging Technology Conference, pp. 802-805, Grand Copthorne Waterfront, Singapore, 2005.
[34] D. J. Yao and K. C. Yeh, “熱電致冷器熱應力模擬”, 中國機械工程學會第二十四屆全國學術研討會論文集, Paper No. E01-0025, pp. 446-450, 2007.
[35] 葉雲煌, “熱電模組受冷熱溫度所產生變形之光學量測與應力分析”, 元智大學機械工程學系碩士論文, 2013.
[36] H. S. Han, S. Y. Kim, T. H. Ji, Y. J. Jee, K. S. Jang and D. H. Oh, “Heat Sink Design for a Thermoelectric Cooling System,” IEEE Xplore, pp. 1222-1230, 2008.
[37] 朱孝業、吳俊麒、黃崇能與李家興,“以半導體致冷晶片模組提升LED散熱效率之研究”, 第六屆全國精密製造研討會, Paper No. A05-20, 2008.
[38] 王威翔,“散熱器對熱電致冷器之性能影響”,國立交通大學機械工程學系碩士論文, 2008.
[39] J. Patel, M. Patel, J. Patel and H. Modi,“Improvement in The COP of Thermoelectric Cooler,”International Journal of Scientific &Technology Research, Vol. 5, Iss. 05, pp. 73-76, 2016.
[40] S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, Vol. 354, pp. 56-58, 1991.
[41] S. Iijima and T. Ichihashi, “Single-shell Carbon Nanotubes of 1-nm diameter,” Nature, Vol. 363, pp. 603-605, 1993.
[42] D. S. Bethune ,C. H. Kiang and M. S. Devries, “Cobalt-Catalysed Growth of Carbon Nanotubes with Single-atomic-layer Walls,” Nature, Vol. 363, pp. 605-607 , 1993.
[43] Website:http://coecs.ou.edu/Brian.P.Grady/images/nanotube.jpg
[44] I. Krupa and I. Chodak, “Physical Properties of Thermoplastic/Graphite Composites,” European Polymer Journal, Vol. 37, pp. 2159-2168, 2001.
[45] A. Allaoui, S .Bai, H. M. Cheng and J. B. Bai, “Mechanical and Electrical Properties of a MWNT/epoxy Composite,” Composites Science and Technology, Vol. 62, pp. 1993-1998, 2002.
[46] M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T. Ikuta, H. Abe and T. Shimizu, “Measuring the Thermal Conductivity of a Single Carbon Nanotube,” Physical Review Letters, Vol. 95, Iss. 06, NO. 5502, pp. 1-4, 2005.
[47] C. M. Ye, B. Q. Shentu and Z. X. Weng, “Thermal Conductivity of High Density Polyethylene Filled with Graphite,” Journal of Applied Polymer Science , Vol. 101, pp. 3806-3810, 2006.
[48] E. Pop, D. Mann, Q. Wang, K. Goodson and H. Dali, “Thermal Conductance of an Individual Single-Wall Carbon Nanotube above Room Temperature,” Nano Letters, Vol. 6, No.1, pp. 96-100, 2006.
[49] W. T. Hong and N. H. Tai, “Investigations on the Thermal Conductivity of Composites Reinforced with Carbon Nanotubes,” Diamond and Related Materials, Vol. 17, Iss. 7–10, pp. 1577-1581, 2008.
[50] Y. Won, Y. Gao, P. A. Matthew, R. Xiang, S. Maruyama, K.W. Thomas, C. Wei and G. E. Kenneth, “Zipping, Entanglement and the Elastic Modulus of Aligned Single-walled Carbon Nanotube Films,” PNAS, Vol. 110, No. 51, pp. 20426-20430, 2013.
[51] 沈宏燦, “人工網膜於活體兔子之機械性質與變形之探討”, 國立清華大學動力機械工程學系碩士論文, 2007.
[52] Website: http://www.correlatedsolutions.com/
[53] 陳柏甫, “三維數位影像相關法之新校正程序,” 國立清華大學動力機械工程學系碩士論文, 2010.
[54] 胡凡勳與盧鴻華, “熱傳遞學”,高立圖書有限公司, 2015.
[55] Website:http://www.schneiderkreuznach.com/index_e.htm
[56] Website:http://www.kphoto.com.tw/
[57] Website:http://www.greenteck-psb.com/index.html
[58] Website:http://www.gwinstek.com.tw/tw/index.aspx
[59] Website:http://www.sanlien.com/web/homepage.nsf/
[60] Website:http://www.yotec.com.tw/
[61] Website:http://www.yscco.com.tw/web/index.asp
[62] 徐梁, “閃光導熱一LFA原理與測試”,耐馳儀器有限公司應用實驗室,產品測試說明書, 2006.
[63] Private Communicatio, 與淡江大學航空太空工程學系牛仰堯教授商討內容.
[64] S. Lee, “How to select a heat sink ”, Electronics Cooling, No. 1, 1995. Website: https://www.electronics-cooling.com/1995/06/how-to-select-a-heat-sink/(Aug. 2017)
[65] 邱瑞易與簡瑞與, “薄膜式熱電致冷器之性能探討”, 2004年能源與冷凍空調學術研討會, Vol. 4, No. 1, pp. 1-7, 2004.
[66] 吳政鋼, “以奈米碳纖維頂端合成懸掛式單壁奈米碳管之元件製作與接觸力分析”, 國立清華大學工程與系統科學學系碩士論文, 2006.
[67] 蘇秀麒, “添加多壁奈米碳管及石墨粉體對碳纖維補強環氧樹脂積層板散熱性質之探討”, 逢甲大學紡織工程學系碩士論文, 2009.
[68] 李承恩, “探討以奈米碳管與石墨烯奈米片製備多層次散熱片之熱傳導性能”,元智大學化學工程與材料科學學系碩士論文, 2016.
[69] 陳富子與呂仲欽, “熱傳遞學”, 曉園出版社, 1989.
[70] J. Che, T. Cagın and W. A Goddard III, “Thermal Conductivity of Carbon Nanotubes,” Nanotechnology ,Vol. 11, pp. 65-69, 2000.
[71] M. Nemilentsau, G. Y. Slepyan and S. A. Maksimenko, “Thermal Radiation from Carbon Nanotubes in the Terahertz Range,” Physical Review Letters, Vol. 99, Iss. 14, No. 403, pp. 1-4, 2007.
[72] W. He, G. Zhang, X. Zhang , J. Ji, G. Li and X. Zhao, “Recent Development and Application of Thermoelectric Generator and Cooler,” Applied Energy, Vol. 143, pp. 1-25, 2015.
[73] H. Lv, X. D. Wanga, J. H. Meng, T. H. Wang and W. M. Yan, “Enhancement of Maximum Temperature Drop across Thermoelectric Cooler through Two-stage Design and Transient Supercooling Effect,” Applied Energy, Vol. 175, pp. 285-292, 2016.
[74] U. S. Department of Energy, “Thermoelectrics: The New Green Automotive Technology,” 2011.
[75] 宋柏毅, 陳光耀, 林育立,“熱電發電技術應用現況與發展”,燃燒季刊, Vol. 23, No. 4, pp. 26-37, 2014.
[76] Website:http://emis.erl.itri.org.tw
[77] Website:http://www.tegpower.com
[78] Website:http://nano.colife.org.tw//
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *