帳號:guest(3.149.230.250)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許哲瑋
作者(外文):Hsu, Che-Wei
論文名稱(中文):氧化石墨烯/環氧樹脂複合材料之製備與機械性質研究
論文名稱(外文):Preparation and Mechanical Properties of Graphene Oxide/Epoxy Composites
指導教授(中文):葉孟考
戴念華
指導教授(外文):Yeh, Meng-Kao
Tai, Nyan-Hwa
口試委員(中文):蔣長榮
張禎元
口試委員(外文):Chiang, Chun-Ron
Chang, Jen-Yuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:104033564
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:89
中文關鍵詞:氧化石墨烯機械性質複合材料
外文關鍵詞:Graphene oxideMechanical propertiesComposites
相關次數:
  • 推薦推薦:0
  • 點閱點閱:271
  • 評分評分:*****
  • 下載下載:20
  • 收藏收藏:0
複合材料組成可分為基材與補強材,高分子複合材料被廣泛應用於許多不同領域,像是航空業、汽車產業、運動用品與建築業等。環氧樹脂為基材中常見的一種熱固性塑膠,其價格低廉已被應用於許多領域,但機械強度不足使其在應用上被限制,本研究使用環氧樹脂為基材,補強材使用氧化石墨烯製作奈米複合材料。實驗部分首先由氧化石墨烯/環氧樹脂複合材料之製程研究,比較不同製程下,氧化石墨烯在複合材料中之分散性,並進一步探討丙酮殘留對複合材料機械性質之影響,接著探討高、低含氧量氧化石墨烯在不同添加比例下對複合材料機械性質之影響,包括撓曲性質、拉伸性質與破裂韌性。
實驗結果顯示,利用丙酮進行預分散步驟能提升氧化石墨烯之分散性,進一步延長丙酮除去時間後,複合材料之拉伸與撓曲性質皆能提升,添加1 wt% 低含氧量氧化石墨烯後,相較於純環氧樹脂,撓曲模數與撓曲強度分別提升13.19 %與18.64 %,楊氏模數與拉伸強度分別提升7.21 %與16.88 % ; 高含氧量氧化石墨烯對複合材料拉伸與撓曲性質的補強效果整體而言不如低含氧量氧化石墨烯,但其對臨界第一模式應力強度因子的提升效果為添加低含氧量氧化石墨烯時兩倍以上,加入0.05 wt% 高含氧量氧化石墨烯後複合材料第一模式臨界應力強度因子提升43.2 %。破裂韌性試驗結束後以場發射掃描式電子顯微鏡觀察補強材於環氧樹脂中分散情形與增韌機制。有限單元法分析氧化石墨烯/環氧樹脂複合材料第一模式應力強度因子,分析結果與實驗值變化趨勢大致相同,誤差約為10 %左右。
Polymer composite materials are widely used in many different fields such as aviation, automobile, sporting and construction industries. As a thermosetting plastic material, epoxy is often used as a matrix material due to its low price and versatility; however, the relatively lower mechanical properties of epoxy limit its application. In this study, the graphene oxide(GO)/epoxy composites were fabricated. The dispersion of GO was first investigated using different manufacturing process and the effect of residual acetone on the mechanical properties of GO/epoxy composites was discussed. Also the flexural properties, tensile properties and fracture toughness of GO/epoxy composites are studied with different wt% of high and low oxide content GO.
The results show that the dispersion of GO in epoxy is improved by the use of acetone. The flexural properties and tensile properties are also improved after extending the time of eliminating acetone, when compared with pure epoxy. With 1 wt% low oxide content GO, the flexural modulus and strength of GO/epoxy composites increase 13.19% and 18.64 %, respectively; the Young’s modulus and tensile strength increase 7.21% and 16.88 %, respectively. The overall enhancement effect on tensile and flexural properties of GO/epoxy composites is better by using low oxide content GO; while the mode-I critical stress intensity factor of GO/Epoxy increased 43.2 % when using high oxide content GO. SEM was used to observe the dispersion and toughening mechanism of GO in epoxy after the fracture toughness test. The analyzed results of mode-I critical stress intensity factor by finite element method is consistent with the experiment results with about 10 % difference.
摘要 I
致謝 III
目錄 IV
圖表目錄 VII
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.2.1 環氧樹脂簡介 2
1.2.2 石墨烯與氧化石墨烯簡介 3
1.2.3 奈米碳複合材料機械性質簡介 4
1.3 研究主題 6
第二章 實驗方法與分析 7
2.1 複合材料組成原料 7
2.1.1 環氧樹脂 7
2.1.2 氧化石墨烯 7
2.2 材料鑑定方法 7
2.2.1 原子力顯微鏡(Atomic Force Microscope, AFM) 8
2.2.2 拉曼光譜儀(Raman spectroscopy) 8
2.3 實驗儀器設備 8
2.3.1 超音波震盪機 9
2.3.2 陶瓷加熱攪拌機 9
2.3.3 機械攪拌機 9
2.3.4 熱風循環烤箱 9
2.3.5 真空烘箱與真空幫浦 10
2.3.6 熱壓機 10
2.3.7鑽石切割機 10
2.3.8電子天秤 11
2.3.9 拉伸試驗機 11
2.3.10 紫外線可見光分光光譜儀(Uv-vis) 11
2.3.11 場發射掃描式電子顯微鏡(FESEM) 11
2.3.12 應變規 12
2.4 試片製作 12
2.5 分散性定性量測 14
2.6 機械性質量測 15
2.6.1 拉伸試驗 15
2.6.2 撓曲試驗 16
2.6.3 破裂韌性試驗 16
2.7 數據分析 17
2.7.1 數據平均值與標準差 18
2.7.2 Chauvenet’s準則 18
2.7.3 最小平方法 19
第三章 有限單元法分析 20
3.1 有限單元分析 20
3.2 含裂縫奈米複合材料破裂韌性之有限單元分析 22
第四章 結果與討論 23
4.1 材料鑑定分析 23
4.1.1 原子力顯微鏡分析 23
4.1.2 拉曼光譜分析 23
4.2 分散性定性量測 24
4.3 氧化石墨烯/環氧樹脂複合材料撓曲性質 24
4.4 氧化石墨烯/環氧樹脂複合材料拉伸性質 26
4.5 氧化石墨烯/環氧樹脂複合材料破裂性質 28
4.6 場發射掃描式電子顯微鏡試片斷裂面微結構觀察 29
4.6.1 低含氧量氧化石墨烯/環氧樹脂複合材料斷裂面 29
4.6.2 高含氧量氧化石墨烯/環氧樹脂複合材料斷裂面 30
4.7 應力強度因子有限單元法分析結果 32
4.7.1 模型建立與收斂性分析 32
4.7.2 氧化石墨烯/環氧樹脂複合材料第一模式應力強度因子分析結果 33
4.7.2 破裂韌性試片裂縫尖端形狀 34
第五章 結論與未來展望 36
5.1 結論 36
5.2 未來展望 37
參考文獻 38
圖表 42
附錄 88
[1]顧宜,複合材料,新文京開發出版股份有限公司,台北,2002。
[2]F. W. Harri, H. J. Spinelli, “Reactive oligomers,” ACS Symposium Series, Vol. 282, Journal of the American Chemical Society, Washington DC, 1985.
[3]林金川,以橡膠改質環氧樹脂提升交聯樹脂薄膜撓曲性之研究,南台科技大學化學工程研究所碩士論文,2004
[4]凌國銓,奈米碳管/環氧樹脂複合材料之電磁屏蔽與機電性質研究,國立清華大學動力機械工程學系碩士論文,新竹,2007。
[5]T. Subhani, M. Latif, I. Ahmad, S. A. Rakha, N. Ali, A. A. Khurram, “Mechanical performance of epoxy matrix hybrid nanocomposites containing carbon nanotubes and nanodiamond,” Materials and Design, Vol. 87, pp. 436-444, 2015.
[6]Y. Miyano, M. Nakada, M. K. McMurry, “Influence of stress ratio on fatigue behavior in the transverse direction of unidirectional CFRPS,” Journal of Composite Materials, Vol. 29, pp. 1808-1815, 1995.
[7]C. E. Browning, C. E. Husman, J. M. Whitney, “Moisture effects in epoxy matrix composites,” Composite Materials: Testing and Design, 1978.
[8]R. T. Potter, D. Purslow, “The environmental degradation of notched CFRP in compression,” Composites, Vol. 14, pp. 206-225, 1983.
[9]A. J. Barker, V. Balasundaram, “Compression testing of carbon fibre-reinforced plastic exposed to humid environments,” Composites, Vol. 18, pp. 217-226, 1987.
[10]沈文馨,微波處理對多壁奈米碳管/環氧樹脂複合材料機械性質之影響,國立清華大學動力機械工程學系碩士論文,新竹,2008。
[11]李振緯,奈米鑽石/環氧樹脂複合材料之機械特性研究,國立清華大學動力機械工程學系碩士論文,2015。
[12]A. K. Geim, K. S. Novoselov, “The rise of graphene,” Nature Material, Vol. 6, pp. 183-191, 2007.
[13]J. R. Potts, D. R. Dreyer, C. W. Bielawski, R. S. Ruoff, “Graphene-based polymer nanocomposites,” Polymer, Vol. 52, pp. 5-25, 2010.
[14]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, Vol. 306, pp. 666-669, 2004.
[15]C. Y. Su, D. Fu, A. Y. Lu, K. K. Liu, Y. Xu, Z. Y. Juang, L. J. Li, “Transfer printing of graphene strip from the graphene grown on copper wires,” Nanotechnology, Vol. 22, pp. 185309-185314, 2011.
[16]Y.Y. Peng, N. W. Pu, Y. M. Fu, Y. M. Liu, M. D. Ger, “Study on the application of graphene and its composite materials to supercapacitors,” Journal of Technology, Vol. 29, pp. 187-192, 2014.
[17]C. Lee, X. Wei, J. W. Kysar, J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science, Vol. 321, pp.385-388, 2008.
[18]A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Letters, Vol. 8(3), pp. 902-907, 2008.
[19]C. Y. Su, A. Y. Lu, C. Y. Wu, Y. T. Li, K. K. Liu, W. Zhang, S. Y. Lin, Z. Y. Juang, Y. L. Zhong, F. R. Chen, L. J. Lin, “Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition,” Nano Letters, Vol. 11, pp. 3612-3616, 2011.
[20]C. Y. Su, Y. Xu, W. Zhang, J. Zhao, A. Liu, X. Tang, C. H. Tsai, Y. Huang, L. J. Li, “High efficient restoration og graphitic structure in graphene oxide using alcohpl vapors,” ACS Nano, Vol. 4(9), pp. 5285-5292, 2010.
[21]S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, “Graphene-based composite materials,” Nature, Vol. 442, pp. 282-286, 2006.
[22]W. S. Hummers, R. E. Offeman, “Preparation of graphitic oxide,” Journal of the American Chemical Society, Vol. 80(6), pp. 1339, 1958.
[23]D. Pandey, R. Reifenberger, R. Piner, “Scanning probe microscopy study of exfoliated oxidized grapheme sheets,” Surface Science, Vol. 602, pp. 1607-1613, 2008.
[24]A. M. Dimiev, S. Eigler, Graphene Oxide: Fundamentals and Applications, Wiley, Chichester, 2016.
[25]O. C. Compton, S. T. Nguyen, “Graphene oxide, highly reduced grapheme oxide, and grapheme: versatile building blocks for carbon-based materials,” Small, Vol. 6(6), pp. 711-723, 2010.
[26]R. J. Young, I. A. Kinloch, L. Gong, K. S. Novoselov, “The mechanics of graphene composites: A review,” Composites Science and Technology, Vol. 72, pp. 1459-1476, 2012.
[27]田民波,材料學概論,五南圖書出版有限公司,台北,2015。
[28]林東炫,多壁奈米碳管/環氧樹脂複合材料之機械與動態特性研究,國立清華大學動力機械工程學系碩士論文,新竹,2014。
[29]I. Neitzel, V. Mochalin, I. Knoke, G.R. Palmese, Y. Gogotsi, “Mechanical properties of epoxy composites with high contents of nanodiamond,” Composites Science and Technology, Vol. 71, pp. 710-716, 2011.
[30]I. Neitzel, V. N. Mochalin, J. Niu, J. Cuadra, A. Kontsos, G. R. Palmese, Y. Gogotsi, “Maximizing young’s modulus of aminated nanodiamond-epoxy composites measured in compression,” Polymer, Vol. 53, pp. 5965-5971, 2012.
[31]L. Yue, G. Pircheraghi, S. A. Monemian, I. M. Zloczower, “Epoxy composites with carbon nanotubes and grapheme nanoplatelets-dispersion and synergy effects,” Carbon, Vol. 78, pp. 268-278, 2014.
[32]Z. Yaping, Z. Aibo, C. Qinghua, Z. Jiaoxia, N. Rongchang, “Functionalized effect on carbon nanotube/epoxy nano-composites,” Materials Science and Engineering A, Vol. 435-436, PP. 145-149, 2006.
[33]S. I. Abdullah, M. N. M. Ansari, “Mechanical properties of graphene oxide (GO)/epoxy composites,” Housing and Building National Research Center, Vol. 11, pp. 151-156, 2015.
[34]A. Plyushch, J. Macutkevic, P. Kuzhir, J. Banys, Dz. Bychanok, Ph. Lambin, S. Bistarelli, A. Cataldo, F. Micciulla, S. Bellucci, “Electromagnetic properties of grapheme nanoplatelets/epoxy composites, Composites Science and Technology, Vol. 128. pp. 75-83, 2016.
[35]S. Vadukumpully, J. Paul, N. Mahanta, S. Valiyaveettil, “Flexible conductive graphene poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability,” Carbon, Vol. 49, pp. 198-205, 2011.
[36]S. Chatterjee, J. W. Wang, W. S. Kuo, N. H. Tai, C. Salzmann, W. L. Li, R. Hollertz, F.A. Nu ̈esch, B. T. T. Chu, “Mechanical reinforcement and thermal conductivity in expanded graphene nanoplatelets reinforced epoxy composites,” Chemical Physics Letters, Vol. 531, pp. 6-10, 2012.
[37]李佳叡,奈米鑽石/環氧樹脂複合材料之分散性與機械特性研究,國立清華大學動力機械工程學系碩士論文,新竹,2015。
[38]N. A. Koratkar, Graphene in composite materials, DEStech Publications, Inc., Lancaster, Lancashire, United Kingdom, 2013.
[39]周鈞淳,碳氣凝膠對高分子預浸材積層板複合材料之機械性質影響,國立清華大學動力機械工程學系碩士論文,新竹,2010。
[40]張皓翔,奈米碳管及孔距對對碳纖維/樹脂複合材料機械性質之影響暨修補系統黏著劑之研究,國立清華大學動力機械工程學系碩士論文,新竹,2011。
[41]蘇黃碩,奈米碳管對碳/碳複合材料機械性質之影響,國立清華大學動力機械工程學系碩士論文,新竹,2010。
[42]M. R. Loos, L. A. F. Coelho, S. H. Pezzin, “The effect of acetone addition on the properties of epoxy,” Polímeros: Ciência e Tecnologia, Vol. 18, pp. 76-80, 2008.
[43]J. D. Ingle, S. R. Crouch, Spectrochemical Aalysis, Prentice-Hall, Englewood Cliffs, NJ, U.S., 1988.
[44]S. R. Pandya, M. Singh, “Dispersion and optical activities of newly synthesized magnetic nanoparticles with organic acids and dendrimers in DMSO studied with UV/vis spectrophotometry,” Journal of Molecular Liquids, Vol. 211, pp. 146-156, 2015.
[45]R. F. Gibson, Principle of composite material mechanics, CRC Press, Boca Raton, FL, U.S., 2007.
[46]ASTM D638-10, “Standard test method for tensile properties of plastics,” Annual Book of ASTM Standards, Vol. 8.1, 2010.
[47]ASTM E132-04, “Standard test method for poisson’s ratio at room temperature,” Annual Book of ASTM Standards, Vol. 8.1, 2010.
[48]ASTM D790-10, “Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials,” Annual Book of ASTM Standards, Vol. 8.1, 2010.
[49]D. Broek(原著),翻譯: 陳文華、張士欽,基本工程破裂力學,國立翻譯館,台北,1995。
[50]ASTM D5045-14, “Standard Test Methods for Plane-Strain Fracture Toughness and Strain Energy Release Rate of Plastic Materials,” Annual Book of ASTM Standards, Vol. 8.2, 2014.
[51]J. W. Dally, W. F. Riley, Experimental stress analysis, McGraw-Hill, New York, 1991.
[52]ANSYS Release 12.1, ANSYS, Inc., 2009.
[53]R. D. Cook, D. S. Malkus, M. E. Plesha, R. J. Witt, Concepts and applications of finite element analysis, Wiley, Hoboken, NJ, U.S., 2001.
[54]C. R. Chiang, “Stress concentration factors of edge-notched orthotropic plates,” Joutnal of Strain Analysis, Vol. 33, No. 5, pp. 395-398, 1998.
[55]A. C. Ferrari, D. M. Basko, “Raman spectroscopy as a versatile tool for studying thr properties of grapheme,” Nature Nanotechnology, Vol. 8, pp. 235-246, 2013.
[56]A. Zandiatashbar, G. H. Lee, S. J. An, S. W. Lee, N. Mathew, M. Terrones, T. Hayashi, C. R. Picu, J. Hone, N. Koratkar, “Effect of defects on the intrinsic strength and stiffness of graphene,” Nature Communications, Vol. 5, pp. 3186, 2014.
[57]S. Y. Fu, X. Q. Feng, B. Lauke, Y. W. Mai, “Effect of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites,” Composites: Part B, Vol. 39, pp. 933-961, 2008.
[58]Y. T. Park, Y. Qian, C. Chan, T. Suh, M. G. Nejhad, C. W. Macosko, A. Stein,” Epoxy toughening with low graphene loading,” Advanced Functional Material, Vol. 25, pp. 575-585, 2015
[59]C. R. Chiang, “On stress concentration factors in orthotropic materials,” Journal of the Chinese Institute of Engineers, Vol. 22, pp. 301-305, 1999.
[60]H. Tada, P. C. Paris, G. R. Irwin, The stress analysis of cracks handbook "3" ^"rd" ed, The American Society of Mechanical Engineers, New York, 2000.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *