帳號:guest(52.15.180.158)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳藝友
作者(外文):Chen, Yi-You
論文名稱(中文):微波電漿輔助化學氣相沉積法成長碳材料應用於場發射手持式常壓電漿產生裝置之設計研究
論文名稱(外文):Study on the field emission enhanced handheld atmospheric pressure plasma jet based on nano-carbon materials by MPCVD
指導教授(中文):蔡宏營
指導教授(外文):Tsai, Hung-Yin
口試委員(中文):李紫原
葉孟考
口試委員(外文):Lee, Chi-Young
Yeh, Meng-Kao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:104033557
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:127
中文關鍵詞:微波電漿化學氣相沉積法奈米碳材料場發射常壓電漿電漿裝置表面處理
外文關鍵詞:Microwave plasma chemical vapor depositionCarbon nanomaterialsField emissionAtmospheric plasmaPlasma deviceSurface treatment
相關次數:
  • 推薦推薦:0
  • 點閱點閱:289
  • 評分評分:*****
  • 下載下載:13
  • 收藏收藏:0
本研究開發之手持式常壓電漿產生裝置,具有體積小,便於握持,對於進行物件表面處理可擁有靈活之操作,此設計亦可結合於既有設備之上成為外掛裝置,拓展其他用途。
本研究開發之場發射輔助常壓電漿產生裝置擁有對物件表面進行表面處理之能力,透過對銅箔表面分別進行1與3分鐘之電漿處理後,使銅箔之表面性質由疏水轉化為親水特性。
本研究透過結合奈米碳材料場發射陰極端與自行設計之手持式常壓電漿產生系統,利用場發射陰極端提供的電子,增加氣體分子碰撞機率,使氣體能於較低功率下產生崩潰(breakdown),達到節省能源之目的。
本研究利用微波電漿化學氣相沉積系統(Microwave plasma chemical vapor deposition system, MPCVD),於大面積矽基板上沉積具有良好場發射特性之奈米碳管與奈米碳片球場發射陰極材料,亦透過調整不同觸媒濃度設定,成長奈米碳管複合奈米碳片球場發射陰極材料,本研究所成長之一步驟奈米碳管複合奈米碳片球場發射陰極材料擁有2.07 V/μm低起始電場(Turn-on filed)與2.80 V/μm低門檻電場(Threshold field),使場發射陰極端在結合常壓電漿產生裝置後能發揮最大效益。
The purpose of this study is to fabricate a handheld field emission enhanced atmospheric pressure plasma jet based on microwave plasma chemical vapor deposition synthesized carbon material.
The device which designed in this study has the advantages of small size, easy to operate and the ability to modify the surface of objects.
There are many advantages of atmospheric pressure plasma, such as no need for expensive vacuum equipment and no limit by chamber size that can increase the efficiency of the process. However, the energy consumption may be a big issue.
Therefore, a handheld device combined field emission theory with atmospheric pressure plasma technology has been fabricated in this study. It uses the electrons that emit from a carbon material to collide the atom of gas then reduces the breakdown power on processing gas and successfully increases the efficiency of plasma generation.
A hybrid material consisting of carbon nanotubes(CNTs) and carbon nanoflake balls(CNFBs) were successfully synthesized on silicon substrates with the size of 1.5×1.5 cm2 by microwave plasma chemical vapor deposition system.
The carbon hybrid material exhibited excellent field emission properties, with its low turn-on field 2.07 V/μm and low threshold field 2.80 V/μm.
摘要 I
Abstract II
致謝 III
目錄 VI
圖目錄 X
表目錄 XVIII
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
第二章 文獻回顧 3
2.1 電漿 3
2.1.1 電漿基本介紹 3
2.1.2 非熱平衡電漿與熱平衡電漿 7
2.1.3 常壓電漿源簡介 8
2.1.4 常壓電漿源種類 9
2.2 場發射效應 14
2.2.1 場發射基礎理論 14
2.2.2 發射端尺寸效應 16
2.2.3 場發射遮蔽效應 22
2.3 奈米碳管 27
2.3.1 奈米碳管簡介 27
2.3.2 奈米碳管的製備方式 29
2.3.3 奈米碳管的場發射特性 31
2.4 石墨烯 32
2.4.1 石墨烯簡介 32
2.4.2 石墨烯的製備方法 33
2.4.3 石墨烯的場發射特性 40
第三章 研究方法 45
3.1 研究流程 45
3.2 常壓電漿系統設計開發 46
3.2.1 手持式場發射輔助常壓電漿產生裝置設計 46
3.2.2 氣體供給系統 50
3.2.3 電源供應器 50
3.2.4 電漿測試參數 51
3.2.5 電漿檢測 51
3.2.6 電漿表面處理 52
3.3 場發射陰極材料成長 52
3.3.1 微波電漿化學氣相沉積系統 52
3.3.2 場發射量測儀 54
3.3.3 掃描式電子顯微鏡 56
3.3.4 實驗藥品與氣體 57
3.4 實驗製程 58
3.4.1 試片前處理 58
3.4.2 溶膠凝膠法製備觸媒與塗佈 58
3.4.3 成長奈米碳材料 59
第四章 研究結果與討論 62
4.1 奈米碳材料成長 62
4.1.1 奈米碳管 63
4.1.2 奈米碳片球 65
4.1.3 兩步驟奈米碳管複合奈米碳片球 67
4.1.4 一步驟奈米碳管複合奈米碳片球 71
4.2 奈米碳材料之場發射特性 73
4.2.1 奈米碳管場發射特性 73
4.2.2 奈米碳片球場發射特性 75
4.2.3 兩步驟奈米碳管複合奈米碳片球場發射特性 76
4.2.4 一步驟奈米碳管複合奈米碳片球場發射特性 79
4.3 場發射輔助常壓電漿產生裝置 83
4.3.1 電源供應頻率與電漿產生之關係 83
4.3.2 純銅陰極之電漿產生結果 86
4.3.3 CNFB-CNT-1s陰極之電漿產生結果 94
4.3.4 貼附銅膠帶矽片陰極之電漿產生結果 107
4.3.5 電漿表面處理 115
第五章 結論與未來展望 120
5.1 結論 120
5.2 未來展望 121
參考文獻 123

[1] W. Crookes, "On radiant matter; a lecture delivered to the British Association for the Advancement of Science, at Sheffield, Friday, August 22, 1879," The American journal of science and Arts, vol. 106, pp. 241-262, 1879.
[2] I. Langmuir, "Oscillations in ionized gases," Proceedings of the National Academy of Sciences, vol. 14, pp. 627-637, 1928.
[3] L. Bárdos and H. Baránková, "Cold atmospheric plasma: Sources, processes, and applications," Thin Solid Films, vol. 518, pp. 6705-6713, 2010.
[4] H. Conrads and M. Schmidt, "Plasma generation and plasma sources," Plasma Sources Science and Technology, vol. 9, pp. 441-454, 2000.
[5] 周麗新, 薄膜工程. 新竹: 國立清華大學材料工程學系, 1995.
[6] A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, "The atmospheric-pressure plasma jet: A review and comparison to other plasma sources," IEEE Transactions on Plasma Science, vol. 26, pp. 1685-1694, 1998.
[7] C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, "Atmospheric pressure plasmas: A review," Spectrochimica Acta Part B, vol. 61, pp. 2-30, 2006.
[8] G. S. Selwyn, H. W. Herrmann, J. Park, and I. Henins, "Materials processing using an atmospheric pressure, RF-generated plasma source," Contributions to Plasma Physics, vol. 41, pp. 610-619, 2001.
[9] H. Koinuma, H. Ohkubo, and T. Hashimoto, "Development and application of a microbeam plasma generator," Applied Physics Letters, vol. 60, pp. 816-817, 1992.
[10] J. Y. Jeong, S. E. Babayan, V. J. Tu, J. Park, I. Henins, R. F. Hicks, and G. S. Selwyn, "Etching materials with an atmospheric-pressure plasma jet," Plasma Sources Science and Technology, vol. 7, pp. 282-285, 1998.
[11] U. Kogelschatz, "Dielectric-barrier discharges: Their history, discharge physics, and industrial applications," Plasma Chemistry and Plasma Processing, vol. 23, pp. 1-46, 2003.
[12] J. S. Chang, P. A. Lawless, and T. Yamamoto, "Corona discharge processes," IEEE Transactions on Plasma Science, vol. 19, pp. 1152-1165, 1991.
[13] R. H. Flower and L. Nordheim, "Electron emission in intense electric fields," Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 119, pp. 173-181, 1928.
[14] J. He, P. H. Cutler, and N. M. Miskovsky, "Generalization of Fowler–Nordheim field emission theory for nonplanar metal emitters," Applied Physics Letters, vol. 59, pp. 1644-1646, 1991.
[15] K. L. Jensen and E. G. Zaidman, "Field emission from an elliptical boss: Exact versus approximate treatments," Applied Physics Letters, vol. 63, pp. 702-704, 1993.
[16] K. L. Jensen and E. G. Zaidman, "Field emission from an elliptical boss: Exact and approximate forms for area factors and currents," Journal of Vacuum Science & Technology B, vol. 12, 1994.
[17] K. L. Jensen and E. G. Zaidman, "Analytic expressions for emission characteristics as a function of experimental parameters in sharp field emitter devices," Journal of Vacuum Science & Technology B, vol. 13, pp. 511-515, 1995.
[18] T. S. Fisher, "Influence of nanoscale geometry on the thermodynamics of electron field emission," Applied Physics Letters, vol. 79, pp. 3699-3701, 2001.
[19] D. Kim, J. E. Broree, and S. Y. Kim, "Numerical study on the field emission properties of aligned carbon nanotubes using the hybrid field enhancement scheme," Applied Physics A, vol. 83, pp. 111-114, 2006.
[20] C. Langer, C. Prommesberger, F. Dams, and R. Schreiner, "Theoretical investigations into the field enhancement factor of silicon structures," Proceedings of International Vacuum Nanoelectronics Conference, pp. 1-2, 2012.
[21] D. S. Roveri, G. M. Sant'Anna, H. H. Bertan, J. F. Mologni, M. A. R. Alves, and E. S. Braga, "Simulation of the enhancement factor from an individual 3D hemisphere-on-post field emitter by using finite elements method," Ultramicroscopy, vol. 160, pp. 247-251, 2016.
[22] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J-M. Bonard, and K. Kern, "Scanning field emission from patterned carbon nanotube films," Applied Physics Letters, vol. 76, pp. 2071-2073, 2000.
[23] X. Q. Wang, M. Wang, H. L. Ge, Q. Chen, and Y. B. Xu, "Modeling and simulation for the field emission of carbon nanotubes array," Physica E, vol. 30, pp. 101-106, 2005.
[24] R. C. Smith and S. R. P. Silva, "Maximizing the electron field emission performance of carbon nanotube arrays," Applied Physics Letters, vol. 94, p. 133104, 2009.
[25] S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, pp. 56-58, 1991.
[26] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature Materials, vol. 6, pp. 183-191, 2007.
[27] M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, "Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load," Science, vol. 287, pp. 637-640, 2000.
[28] M. Kumar and Y. Ando, "Chemical vapor deposition of carbon nanotubes: A review on growth mechanism and mass production," Journal of Nanoscience and Nanotechnology, vol. 10, pp. 3739-3758, 2010.
[29] W. A. D. Heer, A. Chatelain, and D. Ugarte, "A carbon nanotube field-emission source," Science, vol. 270, pp. 1179-1180, 1995.
[30] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park and J. M. Kimd, "Fully sealed, high-brightness carbon-nanotube field-emission display," Applied Physics Letters, vol. 75, pp. 3129-3131, 1999.
[31] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, "Transfer of large-area graphene films for high-performance transparent conductive electrodes," Nano Letters, vol. 9, pp. 4359-4363, 2009.
[32] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, "Large-scale pattern growth of graphene films for stretchable transparent electrodes," Nature, vol. 457, pp. 706-710, 2009.
[33] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, "Large-area synthesis of high-quality and uniform graphene films on copper foils," Science, vol. 324, pp. 1312-1314, 2009.
[34] Y. Kim, W. Song, S. Y. Lee, C. Jeon, W. Jung, M. Kim, and C. Y. Park, "Low-temperature synthesis of graphene on nickel foil by microwave plasma chemical vapor deposition," Applied Physics Letters, vol. 98, p. 263106, 2011.
[35] D. A. Boyd, W. H. Lin, C. C. Hsu, M. L. Teague, C. C. Chen, Y. Y. Lo, W. Y. Chan, W. B. Su, T. C. Cheng, C. S. Chang, C. I. Wu, and N. C. Yeh, "Single-step deposition of high-mobility graphene at reduced temperatures," Nature Communication, vol. 6, pp. 1-8, 2015.
[36] G. Eda, H. E. Unalan, N. Rupesinghe, G. A. J. Amaratunga, and M. Chhowalla, "Field emission from graphene based composite thin films," Applied Physics Letters, vol. 93, p. 233502, 2008.
[37] L. Jiang, T. Yang, F. Liu, J. Dong, Z. Yao, C. Shen, S. Deng, N. Xu, Y. Liu, and H. J. Gao, "Controlled synthesis of large-scale, uniform, vertically standing graphene for high-performance field emitters," Advanced Materials, vol. 25, pp. 250-255, 2013.
[38] F. Ding, A. Rosén, and K. Bolton, "Molecular dynamics study of the catalyst particle size dependence on carbon nanotube growth," Journal of Chemical Physics, vol. 121, pp. 2775-2779, 2004.
[39] I. L. Chang, P. H. Tsai, and H.Y. Tsai, "Field emission characteristics of CNFB-CNT hybrid material grown by one-step MPCVD," Diamond and Related Materials, vol. 69, pp. 229-236, 2016.
[40] K. Samanta, M. Jassal, and A. K. Agrawal, "Atmospheric pressure glow discharge plasma and its applications in textile," Indian Journal of Fibre & Textile Research, vol. 31, pp. 83-98, 2006.
[41] Q. Xiong, A. Y. Nikiforov, M. A. Gonzalez, C. Leys, and X. P. Lu, "Characterization of an atmospheric helium plasma jet by relative and absolute optical emission spectroscopy," Plasma Sources Science and Technology, vol. 22, p. 015011, 2013.
[42] L. Chauvet, L. Therese, B. Caillier, and P. Guillot, "Characterization of an asymmetric DBD plasma jet source at atmospheric pressure," Journal of Analytical Atomic Spectrometry, vol. 29, pp. 2050-2057, 2014.
[43] T. L. Koh, E. C. O’Hara, and M. J. Gordon, "Microplasma-based synthesis of vertically aligned metal oxide nanostructures," Nanotechnology, vol. 23, pp. 425603-1~425603-7, 2012.
[44] N. F. Daudt, J. C. P. Barbosa, M. O. C. Macedo, M. B. Pereira, and C. A. Junior, "Effect of cage configuration in structural and optical properties of TiN films grown by cathodic cage discharge," Materials Research, vol. 16, pp. 766-771, 2013.
[45] Y. Deng, A. D. Handoko, Y. Du, S. Xi, and B. S. Teo, "In situ Raman spectroscopy of copper and copper oxide surfaces during electrochemical oxygen evolution reaction: Identification of Cuǀǀǀ oxides as catalytically active species," ACS Catalysis, vol. 6, pp. 2473-2481, 2016.
[46] K. Tang, X. Wang, W. Yan, J. Yu, and R. Xu, "Fabrication of superhydrophilic Cu2O and CuO membranes," Journal of Membrane Science, vol. 286, pp. 279-284, 2006.
[47] M. Pei, B. Wang, Y. Tung, X. Zhang, H. Yan, and X. Zhang, "Preparation of Cu2O superhydrophobic film with hierarchical structure via the facile route," Asian Journal of Chemistry, vol. 26, pp. 315-318, 2014.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *