帳號:guest(3.21.12.194)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林維謙
作者(外文):Lin, Wei-Chien
論文名稱(中文):應用CMOS-MEMS製程於具溝槽結構之雙邊變形薄膜電容式壓力感測器的設計與實現
論文名稱(外文):Sensitivity Improvement for CMOS-MEMS Capacitive Pressure Sensor Using Double Deformable Diaphragms with Trenches
指導教授(中文):方維倫
指導教授(外文):Fang, Weileum
口試委員(中文):李昇憲
蘇旺申
口試委員(外文):Li, Sheng-Shian
Su, Wang-Shen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:104033552
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:103
中文關鍵詞:CMOS-MEMS壓力感測器Parylene-C抗彎剛度
外文關鍵詞:CMOS-MEMSPressure sensorParylene-CFlexural rigidity
相關次數:
  • 推薦推薦:0
  • 點閱點閱:212
  • 評分評分:*****
  • 下載下載:42
  • 收藏收藏:0
本研究主要為利用TSMC 0.18µm 1P6M CMOS製程平台,搭配金屬濕蝕刻製程以及高分子沉積封腔製程來完成電容式絕對型氣壓壓力感測器。本元件的主要設計目的為,運用電容式壓力感測器具有高靈敏度的特色來達成壓力感測,估計可有效發揮於手機或是平板等個人隨行助理系統上。
本電容式壓力感測器的設計特色有四:(1)設計雙邊感測的變形薄膜來改良一般的傳統電容式壓力感測器,(2)利用不同堆疊厚度的金屬犧牲層,經過金屬濕蝕刻後完成兩種不同寬度的空腔結構;(3)同時在薄膜邊緣設計溝槽結構來改變感測器薄膜的抗彎剛度,使其薄膜變形程度可以進一步的增加,(4)最後沉積高分子材料(Parylene-C)來完成封閉空腔,實現壓力感測器元件之設計。
In this study, we present a new high sensitivity absolute capacitive pressure sensor that it is estimated to exert on your phone or tablet and other personal assistant system. The design features of this capacitive pressure sensor are coating Parylene-C to accomplish two kinds of chambers and using double deformable sensing diaphragms to enhance sensor’s sensitivity. Besides the double deformable sensing diaphragms, the use of trenches can also improve the sensitivity of capacitive pressure sensor by reducing diaphragm’s flexural rigidity. The structure of pressure sensor was made through TSMC 0.18µm 1P6M CMOS-MEMS process. Not only we can effectively use the multilayer film stack features to complete the study, but also we put forward the possibility to develop other pressure sensors by using this CMOS-MEMS platform.
摘要 I
Abstract II
誌謝 III
目錄 VI
圖目錄 IX
表目錄 XIV
第一章 緒論 1
1-1 前言 1
1-2 研究動機 3
1-3 文獻回顧 5
1-3-1 壓力感測機制 5
1-3-2 壓力感測器封裝型式 8
1-4 研究目標 10
第二章 元件設計與分析 23
2-1 TSMC 0.18μm 1P6M CMOS-MEMS製程平台 23
2-2 電容式壓力感測器感測原理 24
2-3 感測結構設計 27
2-3-1 感測薄膜結構設計 27
2-3-2 溝槽結構設計 28
2-3-3 腔體結構設計 29
2-4 結構分析與模擬 30
2-4-1 薄膜剛性模擬分析 31
2-4-2 薄膜變形量模擬分析 33
2-4-3 壓力感測器靈敏度模擬分析 33
第三章 光罩佈局與後製程結果 48
3-1 壓力感測器之結構佈局 48
3-2 壓力感測器之後製程 49
3-3 壓力感測器之後製程結果 52
第四章 量測結果與討論 66
4-1 壓力感測器之表面形貌觀察 66
4-2 壓力感測器之量測結果 68
4-2-1 壓力感測器之量測儀器架設 68
4-2-2 壓力感測器可行性之量測數據分析 68
4-2-3 壓力感測器靈敏度之量測數據分析 69
4-2-4 壓力感測器可靠度之量測數據分析 70
4-3 壓力感測器之量測結果與討論 73
第五章 結論與未來工作 85
5-1 研究成果 85
5-2 未來研究目標 88
5-2-1 改善電容式雙邊變形薄膜壓力感測器的結構 88
5-2-2 CMOS-MEMS製程平台實現接觸式壓力感測器 89
參考文獻 96
[1] Richard P. Feynman, “There's Plenty of Room at the Bottom,” California Institute of Technology, 1959
[2] Garmin, from http://www.garmin.com.tw/products/oem/?cat=oem
[3] Apple, from http://www.apple.com/tw/iphone/
[4] Sony, from https://asia.playstation.com/
[5] Vine, from https://www.vive.com/
[6] J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface Micromachining for Microelectromechanical Systems,” Proceedings of the IEEE, VOL. 86, pp.1552-1574, 1998
[7] G. T. A. Kovacs, N. I. Maluf, and K. E. Petersen, “Bulk Micromachining of Silicon,” Proceedings of the IEEE, VOL. 86, pp.1536-1551, 1998
[8] M. Y. Afridi, J. S. Suehle, M. E. Zaghloul, , D. W. Berning, A. R. Hefner, R. E. Cavicchi, S. Semancik, C. B. Montgomery, and C. J. Taylor, “A Monolithic CMOS Microhotplate-Based Gas Sensor System,” IEEE Sensors Journal, VOL. 2, pp. 644 - 655, 2002
[9] C.-Z. Wei, W. Zhou, Q. Wang, and X. Li, “Monolithic pressure+acceleration sensor with self-test function for reliable & low-cost tire-pressure-monitoring-system (TPMS) applications,” Transducers, Beijing, China, June 5-9, 2011, pp. 1006-1009
[10] Y.-C. Sun, K.-C. Liang, C.-L. Cheng, M.-Y. Lin, R.-S. Chen, and W. Fang, “Performace improvement of CMOS-MEMS pirani vacuum gauge with hollow heater design,” Transducers, Anchorage, Alaska, USA, June 21-25, 2015, pp. 1069-72
[11] T.-Y. Tu, Paul C.-P. Chao, and Y.-P. Lee, “A new non-invasive cuff-less blood pressure sensor,” IEEE Sensors, Baltimore, MD, USA, November 3-6, 2013, pp. 1-4
[12] Yole Developpement, from http://www.yole.fr/
[13] IndustryARC, from http://industryarc.com/
[14] Yole Developpement, from http://www.yole.fr/
[15] Bosch BMP280, datasheet
[16] Yole Developpement, from http://www.yole.fr/
[17] Apple, from http://www.apple.com/tw/watch/
[18] Bosch, from https://www.bosch-sensortec.com/
[19] Grand View Research, from http://www.grandviewresearch.com/
[20] Charles S. Smith, “Piezoresistance Effect in Geruianium and Silicon,” Physical Review, VOL. 94, 1953
[21] Samaun, K. D. Wise, and J. B. Angell, “An IC Piezoresistive Pressure Sensor for Biomedical Instrumentation,” IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. BME-20, pp. 101-109, 1973
[22] K. H.-L. Chau, C. D. Fung, P. R. Harris, and G. A. Dahrooge, “A Versatile Polysilicon Diaphragm Pressure Sensor Chip,” IEEE International Electron Devices Meeting (IEDM), 91,pp. 761-764, 1991

[23] H. Sandmaier and K. Kuhl, “A Square-Diaphragm Piezoresistive Pressure Sensor with a Rectangular Central Boss for Low-Pressure Ranges,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 40, pp. 1754-1759, 1993
[24] Å. Sandvand, E. Halvorsen, K. E. Aasmundtveit, and H. Jakobsen, “Influence of Sensor-Package Hermeticity-Level on Long-Term Drift for a Piezoresistive MEMS Pressure-Sensor,” European Microelectronics Packaging Conference, pp. 1-5, 2015
[25] C. H. Je, C. A. Choi, S. Q. Lee, and W. S. Yang, “Surface Micromachined Pressure Sensor with Internal Substrate Vacuum Cavity,” ETRI Journal, VOL. 38, pp. 685-694, 2016
[26] D.-W. Lee, and Y.-S. Choi, “A novel pressure sensor with a PDMS diaphragm,” Microelectronic Engineering, VOL. 85, pp. 1054-1058, 2008
[27] C.-M. Lin, L.-Y. Lin, and W. Fang, “Monolithic Integration of Carbon Nanotubes Based Physical Sensors,” IEEE International Conference on Micro Electro Mechanical Systems, Hong Kong, China, January 24-28, 2010, pp. 55-58
[28] H.-H. Wang, C.-W. Hsu, W.-H. Liao, L.-J. Yang and C.-L. Dai, “Micro Pressure Sensors of 50µm Size Fabricated by A Standard CMOS Foundry and A Novel Post Process,” IEEE International Conference on Micro Electro Mechanical Systems, Istanbul, Turkey, January 22-26, 2006, pp. 578-581
[29] M.-H. Tsai, C. Wang, C.-M. Sun, and W. Fang, “A Novel Out-of-plane Accelerometers with Fully-differential Sensing Circuit and Sub-micron gap,” Transducers, Lyon, France, June 10-14, 2007, pp. 1487-1490
[30] V. P.-J. Chung, C.-L. Cheng, M.-C. Yip, and W. Fang, “A CMOS Capacitive Vertical-parallel-plate-array Humidity Sensor with Rf-aerogel Fill-in for Sensitivity and Response Time Improvement,” IEEE International Conference on Micro Electro Mechanical Systems, Estoril, Portugal, January 18-22, 2015, pp. 767-770,
[31] T. Fujimori, H. Takano, S. Machida, and Y. Goto, “Tiny (0.72 mm2) pressure sensor integrating MEMS and CMOS LSI with back-end-of-line MEMS platform,” Transducers, Denver, CO, USA, June 21-25, 2009, pp. 1924-1927
[32] C.-M. Sun, C. Wang, M.-H. Tsai, H.-S. Hsieh, and W. Fang, “Monolithic integration of capacitive sensors using a double-side CMOS MEMS post process,” J. Micromech. Microeng., VOL. 19, 015023, 2009
[33] N. Narducci, Y.-C. Liu, W. Fang, and J. Tsai, “CMOS MEMS capacitive absolute pressure sensor,” J. Micromech. Microeng., VOL. 23, 055007, 2013
[34] C.-L. Cheng, H.-C. Chang, C.-I. Chang, Y.-T. Tuan, and W. Fang, “Mechanical force-displacement transduction structure for performance enhancement of CMOS-MEMS pressure sensor,” IEEE International Conference on Micro Electro Mechanical Systems, San Francisco, CA, USA, January 26-30, 2014, pp. 757–760
[35] C.-L. Cheng, H.-C. Chang, C.-I. Chang and W. Fang, “Development of a CMOS MEMS pressure sensor with a mechanical force displacement transduction structure,” J. Micromech. Microeng., VOL. 25, 125024, 2015
[36] Eswaran P, and Malarvizhi S, “MEMS Capacitive Pressure Sensors: A Review on Recent Development and Prospective,” International Journal of Engineering and Technology, VOL. 5, pp. 2734-2746, 2013
[37] Y. S. Lee, and K. D. Wise, “A batch-fabricated silicon capacitive pressure transducer with low temperature sensitivity,” IEEE Transactions on Electron Devices, VOL. ED-29, pp. 42-48 ,1982
[38] D.-S. Nguyen, P. Pillatsch, Y. Zhu, I. Paprotny, P. K. Wright, and R. D. White, “MEMS-based Capacitive Pressure Sensors with Pre-stressed Sensing Diaphragms,” IEEE Sensors, Busan, South Korea, November 1-4, 2015, pp. 1-4
[39] Y. Zhang, R. Howver, B. Gogoi, and N. Yazdi, “A High-sensitive Ultra-thin Mems Capacitive Pressure Sensor,” Transducers, Beijing, China, June 5-9, 2011, pp. 112-115
[40] C. Walk, A. Goehlich, A. Giese, M. Goertz, H. Vogt, and M. Kraft, “Investigation of Diaphragm Deflection of an Absolute MEMS Capacitive Polysilicon Pressure Sensor,” Proc. SPIE Microtechnologies, VOL. 9517, 2015
[41] X. Luo, and Y. B Gianchandani, “A 100 μm diameter capacitive pressure sensor with 50 MPa dynamic range,” J. Micromech. Microeng., VOL. 26, 045009, 2016
[42] W. Sim, B. Kim, B. Choi, and J.-O. Park, “Theoretical and experimental studies on the parylene diaphragms for microdevices,” Microsystem Technologies, VOL. 11, pp. 11-15, 2005
[43] S.-H. Tseng, “Design and Implementation of a CMOS-MEMS Altimeter,” master thesis, National Tsing Hua University, Hsinchu, Taiwan, 2012
[44] W. H. Ko, “Solid-state capacitive pressure transducers,” Sensors and Actuators, 10, pp. 303–320, 1986
[45] R. Puers, “Capacitive sensors: when and how to use them,” Sensors and Actuators A, 37-38, pp. 93-105, 1993
[46] CIC, from https://www.cic.org.tw/main.jsp
[47] Bosch BMP085, datasheet
[48] NXP MPL3115A2, datasheet
[49] HopeRF HP203B, datasheet
[50] Infineon KP234, datasheet
[51] S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells. 2nd Ed., New York, NY: McGraw-Hill, 1995
[52] M. Shahiri-Tabarestani, B. A. Ganji, and R. Sabbaghi-Nadooshan, “Design and Simulation of High Sensitive Capacitive Pressure Sensor with Slotted Diaphragm,” International Conference on Biomedical Engineering (ICoBE), pp. 484-489, 2012
[53] PARA TECH Parylene-C, datasheet
[54] J. Rion, “Ultra-Light Photovoltaic Composite Sandwich Structures,” PhD thesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, 2008.
[55] H. Kapels, R. Aigner, and C. Kolle, “Monolithic Surface-Micromachined Sensor System for High Pressure Applications,” Transducers' 01 Eurosensors XV, Munich, Germany, June 10-14, 2001, pp. 56-59,
[56] G. K. Fedder, “CMOS-Based Sensors,” IEEE Sensors, pp. 125-128, 2005
[57] Polymer Deposition System (PDS), datasheet
[58] WYKO NT1100, datasheet
[59] J. L. de Segovia, “Physics of outgassing,” CERN Accelerator School: Vacuum Technology, pp. 99-110, 1999
[60] C.-L. Cheng, M.-H. Tsai and W. Fang, “Determining the thermal expansion coefficient of thin films for a CMOS MEMS process using test cantilevers,” J. Micromech. Microeng., VOL. 25, 025024, 2015
[61] Linkam Ltd, THMS600, datasheet
[62] W. H. Ko, and Q. Wang, “Touch mode capacitive pressure sensors,” Sensors and Actuators, 75, pp. 242–251, 1999
[63] T. Pedersena, G. Fragiacomoa, O. Hansena, and, E.V. Thomsena, “Highly sensitive micromachined capacitive pressure sensor with reduced hysteresis and low parasitic capacitance,” Sensors and Actuators A: Physical, 154, pp. 35-41, 2009
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *