帳號:guest(13.58.3.32)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):施庭昇
作者(外文):Shih, Ting-Sheng
論文名稱(中文):微型化氣泡致動式細胞分選儀
論文名稱(外文):A Miniaturized Bubble-Actuated Cell Sorter
指導教授(中文):劉承賢
指導教授(外文):Liu, Cheng-Hsien
口試委員(中文):徐琅
張晃猷
口試委員(外文):Hsu, Long
Chang, Hwan You
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:104033546
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:60
中文關鍵詞:微幫浦彎管流無透鏡成像
外文關鍵詞:Micro pumpDean flowLens-free imaging
相關次數:
  • 推薦推薦:0
  • 點閱點閱:207
  • 評分評分:*****
  • 下載下載:15
  • 收藏收藏:0
在一般生物研究或臨床醫學上,我們時常需要分析病人的檢體(如:尿液、血液)中特定的細胞或細菌,所以我們必須將其從檢體中分選出來。目前常被用來分選細胞、細菌的實驗室儀器有流式細胞儀、離心機等,但是它們不僅價格昂貴、體積大,且在操作上也需要許多繁複的步驟,會造成時間及樣品的浪費。隨著微機電系統和微流體技術的成熟,將以往大型的儀器微小化會是將來發展的趨勢。本研究利用無透鏡光學投影原理搭配微機電製程技術製作的微流體分選系統,設計一微型化細胞分選儀,使樣品載入晶片時不需要繁複的製備程序。
本研究分成微流體晶片系統及無透鏡投影成像系統,晶片包含微幫浦、聚焦模組及氣泡致動式分選。微幫浦利用電磁鐵以6.25Hz的頻率按壓驅動液體,能夠使其流速約等於1μL/min。聚焦部分利用同心圓結構產生彎管流效應,使細胞及微粒子在彎曲結構的最後聚焦在流道中間,當粒子大小為10μm,其聚焦效率約為70%。將聚焦部分和分選部分中間的流道拓寬,減緩流速讓後方的細胞特徵辨識變得更容易,當晶片的輸入流速為1μL/min時,在分選區域的粒子移動速度約為0.29mm/s。分選方式利用電磁鐵擠壓氣體通道,在主流道中形成氣泡,改變細胞或微生物粒子的行進方向。使用光源投射於載有細胞或微生物的分選晶片上,將其橫切面投影在CMOS影像感測器上,並把得到的影像送入微處理器(Raspberry Pi)進行影像處理,標記出細胞或微生物粒子的大小,再藉由鑑別結果來致動電磁鐵來達成細胞分選的效果。
In biological research and clinical medicine, we often need to analyze patients’ specimen such as urine and blood for detection of specific cells or bacteria. Recently, flow cytometry has been used widely for sorting. However, present flow cytometry presently available in the market is bulky and expensive. Owing to the advances in the micro-electromechanical systems and microfluidic technology, the miniaturization of the traditional large-scale equipment has been paid attention to. In this study, a miniaturized bubble-actuated cell sorter, which does not require sample preparation with lens-free projective system, is proposed.
This research is to develop an integrated system which comprises of a lens-free projective system and a cell sorter chip including micro-pump, focusing function and bubble-actuated sorting. The micro-pump chip actuates the liquid by using electromagnet with a frequency of 6.25Hz to press the chamber on chip. The flow rate of pumping is equivalent to 1μL/min by using a syringe pump. The focusing module consists of curved channel to achieve the focus function and equilibrium at the end of the curved channel. When using 10μm beads, the efficiency of focusing is around 70%. Increasing microchannel width slightly makes the flow rate slower between the focusing part and the sorting part. We achieved particle velocity on sorting area around 0.29mm/s under the flow rate of 1μL/min. The sorting part of microfluidic chip is pressed by electromagnet to form the bubble on main channel to change the direction of particles. The image which is captured by a CMOS image sensor is sent to the processor (Raspberry Pi) for the image processing to identify the size of cells. Then the electromagnet is actuated to form the bubble which helps to change direction of cells for cell sorting.
第一章 緒論 10
1.1 研究背景 10
1.1.1 微機電與微流體晶片 10
1.1.2 目前分選系統 11
1.1.3 無透鏡成像系統 14
1.2 研究動機 15
1.3 文獻回顧 16
1.3.1 集中排列技術 16
1.3.2 氣泡在微流體中的應用 17
1.3.3 微型分選晶片 19
1.3.4 無透鏡成像投影系統 21
1.3.5 微型幫浦 22
第二章 系統理論 24
2.1 微流體分析 24
2.2 彎管流效應 26
2.3 氣泡理論分析 28
第三章 晶片及系統設計 31
3.1 晶片設計概念 31
3.1.1 微幫浦設計 32
3.1.1 集中排列區域 34
3.1.2 細胞分選區域 35
3.2 晶片製程 37
3.2.1 晶片製作過程 37
3.2.2 黃光微影製程 38
3.2.3 微流道晶片製程 39
3.2.4 製程結果 40
3.3 系統設計 41
3.3.1 系統硬體架設 42
3.3.2 光源設計 43
3.3.3 影像軟體設計 45
第四章 實驗結果與討論 47
4.1 集中區域效果 47
4.2 粒子速度與輸入流速之關係 48
4.3 分選區域測試 50
4.4 微幫浦測試 51
4.5 無透鏡成像分選系統 52
第五章 結論與未來展望 54
參考文獻 56
附錄 59
V4L2完整流程 59
[1] NARLabs. (2005). 數位微流體式實驗室晶片. Available: http://www.itrc.narl.org.tw/Publication/Newsletter/no69/p10.php [Online]
[2] S.-L. Hsieh, "Flow cytometry," in 後基因體時代之生物技術, ed, 2003, pp. 249-262. [Online]
[3] Tumblr. (2014). Tools of the trade: FACS. Available: https://i-learned-this-today.tumblr.com/post/25134930984/tools-of-the-trade-facs-physics-and-chemistry [Online]
[4] A. Ozcan and U. Demirci, "Ultra wide-field lens-free monitoring of cells on-chip," Lab Chip, vol. 8, pp. 98-106, Jan 2008.
[5] D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, "Continuous inertial focusing, ordering, and separation of particles in microchannels," Proc Natl Acad Sci U S A, vol. 104, pp. 18892-18897, Nov 27 2007.
[6] A. V. James B. Knight, James P. Brody, and Robert H. Austin, "Hydrodynamic Focusing on a Silicon ChipMixing Nanoliters in Microseconds," PHYSICAL REVIEW LETTERS, vol. 80, pp. 3863-3866, 1998.
[7] T. Stiles, R. Fallon, T. Vestad, J. Oakey, D. W. M. Marr, J. Squier, et al., "Hydrodynamic focusing for vacuum-pumped microfluidics," Microfluidics and Nanofluidics, vol. 1, pp. 280-283, 2005.
[8] M. G. Lee, S. Choi, and J. K. Park, "Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device," Lab Chip, vol. 9, pp. 3155-3160, Nov 7 2009.
[9] G.-B. L. Che-Hsin Lin, Member, IEEE, Member, ASME, Lung-Ming Fu, and Bao-Herng Hwey, "Vertical Focusing Device Utilizing Dielectrophoretic Force and Its Application on Microflow Cytometer," JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, vol. 13, pp. 923-932, 2004.
[10] H. Chu, I. Doh, and Y. H. Cho, "A three-dimensional (3D) particle focusing channel using the positive dielectrophoresis (pDEP) guided by a dielectric structure between two planar electrodes," Lab Chip, vol. 9, pp. 686-91, Mar 7 2009.
[11] S.-H. Chiu and C.-H. Liu, "An air-bubble-actuated micropump for on-chip blood transportation," Lab Chip, vol. 9, p. 9, 2009.
[12] K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, "Laser-induced thermal bubbles for microfluidic applications," Lab Chip, vol. 11, pp. 1389-95, Apr 07 2011.
[13] D. Ahmed, X. Mao, J. Shi, B. K. Juluri, and T. J. Huang, "A millisecond micromixer via single-bubble-based acoustic streaming," Lab Chip, vol. 9, pp. 2738-41, Sep 21 2009.
[14] T.-H. Wu, L. Gao, Y. Chen, K. Wei, and P.-Y. Chiou, "Pulsed laser triggered high speed microfluidic switch," Applied Physics Letters, vol. 93, p. 144102, 2008.
[15] M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, et al., "Microfluidic sorting of mammalian cells by optical force switching," Nat Biotechnol, vol. 23, pp. 83-7, Jan 2005.
[16] J. C. Baret, O. J. Miller, V. Taly, M. Ryckelynck, A. El-Harrak, L. Frenz, et al., "Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity," Lab Chip, vol. 9, pp. 1850-8, Jul 7 2009.
[17] T. H. Wu, Y. Chen, S. Y. Park, J. Hong, T. Teslaa, J. F. Zhong, et al., "Pulsed laser triggered high speed microfluidic fluorescence activated cell sorter," Lab Chip, vol. 12, pp. 1378-83, Apr 07 2012.
[18] D. R. Gossett, W. M. Weaver, A. J. Mach, S. C. Hur, H. T. Tse, W. Lee, et al., "Label-free cell separation and sorting in microfluidic systems," Anal Bioanal Chem, vol. 397, pp. 3249-67, Aug 2010.
[19] S. S. Kuntaegowdanahalli, A. A. Bhagat, G. Kumar, and I. Papautsky, "Inertial microfluidics for continuous particle separation in spiral microchannels," Lab Chip, vol. 9, pp. 2973-80, Oct 21 2009.
[20] S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, "Lensfree holographic imaging for on-chip cytometry and diagnostics," Lab Chip, vol. 9, pp. 777-87, Mar 21 2009.
[21] S. O. I. Sungkyu Seo, Ikbal Sencan, Onur Mudanyali, Ting-Wei Su, and A. E. Waheb Bishara, and Aydogan Ozcan, "High-Throughput Lens-Free Blood Analysis on a Chip," Analytical Chemistry, vol. 82, pp. 4621-4627, 2010.
[22] G. Jin, I. H. Yoo, S. P. Pack, J. W. Yang, U. H. Ha, S. H. Paek, et al., "Lens-free shadow image based high-throughput continuous cell monitoring technique," Biosens Bioelectron, vol. 38, pp. 126-31, Oct-Dec 2012.
[23] M. Roy, D. Seo, C. H. Oh, M. H. Nam, Y. J. Kim, and S. Seo, "Low-cost telemedicine device performing cell and particle size measurement based on lens-free shadow imaging technology," Biosens Bioelectron, vol. 67, pp. 715-23, May 15 2015.
[24] Rory Dijkink and C.-D. Ohl, "Laser-induced cavitation based micropump," Lab Chip, vol. 8, pp. 1676-1681, 2008.
[25] B. T. Chia, H.-H. Liao, and Y.-J. Yang, "A novel thermo-pneumatic peristaltic micropump with low temperature elevation on working fluid," Sensors and Actuators A: Physical, vol. 165, pp. 86-93, 2011.
[26] K. Iwai, K. C. Shih, X. Lin, T. A. Brubaker, R. D. Sochol, and L. Lin, "Finger-powered microfluidic systems using multilayer soft lithography and injection molding processes," Lab Chip, vol. 14, pp. 3790-9, Oct 07 2014.
[27] S. A. Harisha Ramachandraiah , Asim M. Faridi , Jesper Gantelius, Jacob M. Kowalewski, Gustaf Ma rtensson, and a. A. Russom, "Dean flow-coupled inertial focusing in curved channels," BIOMICROFLUIDICS, vol. 8, pp. 1932-1058, 2014.
[28] V. van Steijn, C. R. Kleijn, and M. T. Kreutzer, "Predictive model for the size of bubbles and droplets created in microfluidic T-junctions," Lab Chip, vol. 10, pp. 2513-8, Oct 07 2010.
[29] A. R. Gamboa, C. J. Morris, and F. K. Forster, "Improvements in Fixed-Valve Micropump Performance Through Shape Optimization of Valves," Journal of Fluids Engineering, vol. 127, p. 339, 2005.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *