帳號:guest(3.140.197.71)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鍾群
作者(外文):Chung, Chun
論文名稱(中文):以點與塊稀少限制之疊代式壓縮感知演算法 解決聲源識別與特性問題
論文名稱(外文):Iterative Compressive Sensing (CS) algorithms for solving acoustic source characterization problems with point or block sparsity constraints
指導教授(中文):白明憲
指導教授(外文):Bai, Ming-Sian
口試委員(中文):劉奕汶
陳榮順
口試委員(外文):Liu, Yi-Wen
Chen, Rong-Shun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:104033538
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:53
中文關鍵詞:噪音源識別牛頓法疊代式感知壓縮塊稀少
外文關鍵詞:NSINewton's methodCompressed sensingBlock sparsity
相關次數:
  • 推薦推薦:0
  • 點閱點閱:87
  • 評分評分:*****
  • 下載下載:10
  • 收藏收藏:0
本論文提出一個以點與塊限制之疊代式壓縮感知演算法來解決聲源識別與特性問題。聲場模型是基於等效聲源法(equivalent source method, ESM),此反算問題是一個線性欠定問題 (underdetermined problem),傳統上使用凸優化(convex optimization)來解決但運算效率不佳且不能處理連續分佈的聲源,因此本論文提出以牛頓法 (Newton’s method) 配合特殊修剪程序之演算法,修剪程序使用一個二元遮罩 (binary mask) 達到促進稀少性的限制,並且可以應用在二維和非同調聲源上。在後處理部分,聲學參數如聲壓,粒子速度、平均聲強、聲功率及輻射圖可以由先前等效聲源法得到的等效聲源基底計算出。此外,部分聲場分解 (partial field decomposition) 也被實現。本論文以模擬與實驗驗證此演算法,並探討了基底不匹配 (basis mismatch) 的議題。結果顯示此疊代式感知壓縮演算法與凸優化相比有極好的聲場影像表現以及較少的運算時間。
In this thesis, an iterative Compressive Sensing (CS) algorithm is proposed to solve acoustical source characterization problems with point and/or block sparsity constraints. The inverse problems are formulated with the Equivalent Source Method (ESM) as linear underdetermined systems of equations. Conventional approaches based on convex optimization can be computationally expensive and fail to deal with continuously distributed source. To overcome these drawbacks, an iterative algorithm adapted from the Newton’s method with a special pruning process incorporated is developed. The pruning process employs a binary mask that admits sparsity-promoting constraints of two dimensional and incoherent block sources. In the post-processing, acoustic variables including sound pressure, particle velocity, sound intensity, sound power, and radiation pattern can be calculated on the basis of the equivalent source amplitudes obtained previously using the ESM. In addition, partial field decomposition can also be implemented. Numerical and experimental investigations are conducted to validate the proposed technique. Basis mismatch issues are examined. The results have demonstrated that the iterative CS method achieved superior imaging performance with little computational cost, as compared to conventional convex optimization package.
摘 要.....................................................................................................i
ABSTRACT..............................................................................................ii
誌 謝...................................................................................................iii
TABLE OF CONTENT...........................................................................iv
LIST OF TABLE.......................................................................................v
LIST OF FIGURE...................................................................................vi
I. INTRODUCTION 1
II. ACOUSTIC INVERSE PROBLEMS 3
A. Equivalent source method (ESM) and the array model 3
B. Underdetermined linear system 3
III. ITERATIVE CS ALGORITHM 7
A. Sparsity constraints 7
B. Newton’s (NT) method 8
IV. POST-PROCESSING 13
A. Acoustic variables 13
B. Partial field decomposition 15
V. NUMERICAL SIMULATION 16
A. Two speech sources 16
B. Basis mismatch issue 17
C. Baffled circular rigid piston 17
VI. EXPERIMENTAL INVESTIGATION 36
A. A loudspeaker and a hand cutter 36
B. A fan and a hand cutter 37
VII. CONCLUSIONS 49
REFERENCES 50

[1] K. Begin and K. Haddad, “Noise source identification techniques: simple to advanced applications,” Proceedings of the Acoustics 2012, 1781-1786 (2012).
[2] J. D. Maynard, E. G. Williams, and Y. Lee, “Nearfield acoustic holography: I. Theory of generalized holography and the development of NAH,” J. Acoust. Soc. Am., 78(4), 1395-1413 (1985).
[3] E. G. Williams and J. D. Maynard, “Holographic imaging without the wavelength resolution limit,” Phys. Rev. Lett. 45, 554–557 (1980).
[4] E. G. Williams, “Continuation of acoustic near-fields,” J. Acoust. Soc. Am. 113, 1273–1281 (2003).
[5] J. Hald, “Basic theory and properties of statistically optimized near-field acoustical holography,” J. Acoust. Soc. Am. 125, 2105–2120 (2009).
[6] S. F. Wu and J. Yu, “Reconstructing interior acoustic pressure fields via Helmholtz equation least-squares method,” J. Acoust. Soc. Am. 104, 2054–2060 (1998).
[7] A. Sarkissian, “Method of superposition applied to patch near-field acoustic holography,” J. Acoust. Soc. Am. 118, 671–678 (2005).
[8] R. Bai, “Application of BEM (boundary element method)-based acoustic holography to radiation analysis of sound sources with arbitrarily shaped geometries,” J. Acoust. Soc. Am. 92, 533–549 (1992).
[9] K. Kim and J. G. Ih, “On the reconstruction of the vibro–acoustic field over the surface enclosing an interior space using the boundary element
method,” J. Acoust. Soc. Am. 100, 3003–3016 (1996).
[10] J. Antoni, “A Bayesian approach to sound source reconstruction: Optimal basis, regularization, and focusing,” J. Acoust. Soc. Am. 131, 2873–2890 (2012).
[11] M. Aucejo, N. Totaro, and J.-L. Guyader, “Identification of source velocities on 3d structures in non-anechoic environments: Theoretical background and experimental validation of the inverse patch transfer functions method,” J. Sound Vib. 329, 3691–3708 (2010).
[12] N. P. Valdivia and E. G. Williams, “Study of the comparison of the methods of equivalent sources and boundary element methods for near-field acoustic holography,” J. Acoust. Soc. Am. 120, 3694–3705 (2006).
[13] J. Hald, “Basic theory and properties of statistically optimized near-field acoustical holography,” J. Acoust. Soc. Am. 125, 2105–2120 (2009).
[14] J. Hald, “Scaling of plane-wave functions in statistically optimized nearfield acoustic holography,” J. Acoust. Soc. Am. 136, 2687–2696 (2014).
[15] A. Xenaki, E. Fernandez-Grande, and P. Gerstoft, “A sparse equivalent source method for near-field acoustic holography,” J. Acoust. Soc. Am. 141, 532–542 (2017).
[16] A. Sarkissian, “Method of superposition applied to patch near-field acoustical holography,” J. Acoust. Soc. Am. 118, 671–678 (2005).
[17] G. Chardon, L. Daudet, A. Peillot, F. Ollivier, N. Bertin, and R. Gribonval, “Near-field acoustic holography using sparse regularization and compressive sampling principles,” J. Acoust. Soc. Am. 132, 1521–1534 (2012).
[18] E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Proc. Mag. 25, 21–30 (2008).
[19] E. Candes, J. Romberg and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Comm. Pure and Applied Math. 59(8), 1207-1223 (2006).
[20] J. Hald, “Fast wideband acoustical holography.” J. Acoust. Soc. Am. 139 (4), 1508-1517 (2016).
[21] A. Xenaki, E. Fernandez-Grande, and P. Gerstoft, “Block-sparse beamforming for spatially extended sources in a Bayesian formulation,” J. Acoust. Soc. Am. 140, 1828–1838 (2016).
[22] M. R. Bai, J. G. Ih, and J. Benesty, Acoustic Array Systems: Theory, Implementation, and Application, Wiley-IEEE Press, 2013, 1st edition, Singapore, Chaps. 3-4, 2013.
[23] J. A. Tropp and S. J. Wright. “Computational Methods for Sparse Solution of Linear Inverse Problems” IEEE vol. 98, no.6, June 2010.
[24] D. Ingrid, M. Defrise, and C. De Mol. "An iterative thresholding algorithm for linear inverse problems with a sparsity constraint." Communications on pure and applied mathematics 57.11 (2004): 1413-1457.
[25] S. Boyd and L. Vandenberghe, Convex optimization, Cambridge University Press, New York, Chap. 1-7 (2004).
[26] M. R. Bai and C. C. Chen, “Application of Convex Optimization to Acoustical Array Signal Processing,” J. Sound Vibration, 332(5), 6596-6616 (2013).
[27] M. Grant, and S. Boyd, cvx, Version 1.21 MATLAB software for disciplined convex programming available at http://cvxr.com/cvx, (last viewed August 20, 2016).
[28] R. Wait, The numerical Solution of Algebraic Equations, John Wiley & Sons, 1979.
[29] I. D. L. Bogle and J. D. Perkins, A new sparsity preserving quasi-Newton update for solving nonlinear equations, SIAM J. Sci. Statist. comp., 11, 621-630, 1990.
[30] C. W. Groetsch, “The theory of Tikhonov regularization for Fredholm equations of the first kind “, Pitman Advanced Pub. Program, Boston (1984).
[31] L. Song, G. H. Koopmann and J. B. Fahnline, “Active control of the acoustic radiation of a vibrating structure using a superposition formulation,” J. Acoust. Soc. Am. 89(6), 2786-2792 (1991).
[32] M. R. Bai, Y. S. Chen and Y. Y. LO, “A two-stage noise source identification technique based on a farfield random parametric array” J. Acoust. Soc. Am. 141 (5), 2978-2988 (2017).
[33] M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for solving linear systems,” J. Res. Natl. Bur. Stand. (U. S.) 49, 409–436 (1952).
[34] ITU-T Recommendation P.862, “Perceptual evaluation of speech quality (PESQ): An objective method for end-to-end speech quality assessment of narrow-band telephone networks and speech codecs,” International Telecommunication Union, Geneva, Switzerland, 21pages, (2001).

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *