帳號:guest(3.14.143.137)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張修誠
作者(外文):Chang, Hsiu-Cheng.
論文名稱(中文):光閘極式二硫化鉬場效電晶體元件 研發與其應用於高靈敏離子感測器
論文名稱(外文):Development of Light-Gating MoS2 FET Devices and Their Applications to Highly Sensitive Ion Sensors
指導教授(中文):洪健中
指導教授(外文):Hong, Chien-Chong
口試委員(中文):陳治平
劉通敏
黃國柱
口試委員(外文):Chen, Chie-Pein
Liou, Tong-Miin
Hwang, Kuo-Chu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:104033536
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:112
中文關鍵詞:介電泳組裝二維奈米材料二硫化鉬微米片場效電晶體生醫感測器離子檢測
外文關鍵詞:DEP assemblytwo dimensional nanomaterialsMoS2 microflakesFET biosensorsion detection
相關次數:
  • 推薦推薦:0
  • 點閱點閱:304
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在過去發展的生醫感測器中,傳統上以矽為基材之生醫感測器雖然具有高解析度、高靈敏性以及低濃度檢測極限等優點,但需經過繁複的沉積及蝕刻製程,故不適合低成本開發。而在場效電晶體為基礎的生醫感測器中,過去已開發出多種不同型態的電閘極,然而電閘極不易於全整合的檢測應用。在材料方面,過去發現的二維奈米材料石墨烯縱然擁有良好的電子、光及機械特性,但由於其無直接能隙,故在電子電機領域中的應用有其限制與困難點。有鑑於此,現今許多研究朝向探索其他二維奈米材料,如: 二硫化鉬。此外,雖然近年來已開始有利用以二維奈米材料為基礎的場效電晶體型生醫感測器出現,但尚未有研究針對以紫外光作為場效電晶體之閘極,結合生醫感測器之應用出現,因而本研究著重於介電泳組裝製程開發,搭配紫外光作為二硫化鉬場效電晶體之光閘極,並應用於離子檢測中。
在本研究中,首先以Ansys模擬軟體分析電場之三維空間分布,並確認物鏡型電極為最佳之電極設計,製程方面以液態剝離法製作之二硫化鉬奈米片,進行介電泳力自組裝製程探討,其結果表明物鏡型電極有著最佳的組合結果,經組裝後的二硫化鉬奈米片,在電極上之位置偏移量平均小於1 μm。此外,本研究也使用原子力顯微鏡 (AFM)對已組裝完成之二硫化鉬場效電晶體晶片進行厚度量測,確認外觀型態。而本研究亦使用機械剝離法搭配高分子材料PDMS轉印的方式來製作二硫化鉬奈米片場效電晶體,並比較兩種製程下之效能差異,於光電響應特性測試中,由介電泳組裝製作而成二硫化鉬場效電晶體,其效能約比乾式製程之結果約低於87 %。在性能提升方面,本研究參考過去文獻之二硫化鉬對金屬能階之比較,選用鋁來取代金作為感測器電極。
本研究主要可應用於離子檢測,在pH值量測的測試中,靈敏度為0.19 μA 1/2 / pH,響應時間在1秒內,pH檢測區間位於pH 2~12,並於干擾性測試中,當鈉離子濃度大於10-4 M時才會發生較明顯的檢測誤差。

關鍵字: 介電泳組裝、二維奈米材料、二硫化鉬微米片、場效電晶體生醫感測器、離子檢測
Biosensors traditionally based on Si had advantages such as high resolution, high sensitivity, and low concentration detection limit, but they required complicated deposition and etching processes and was not suitable for low-cost development. In the field of field effect transistor-based biosensors, many different types of electric gates had been developed, but electric gates were not suitable in the use of full-integration with other components. In terms of materials, the two-dimensional nanomaterial graphene discovered in the past had good electric, optical, and mechanical properties. However, due to its indirect energy gap, its application in the field of electrical engineering had its limitations and difficulties. In light of this, many researches today are heading towards the exploration of other two-dimensional nanomaterials such as: molybdenum disulfide. In addition, despite the fact that FET-based biosensors based on two-dimensional nanomaterials have begun to appear in recent years, there has been no research on the use of UV as the gate of field-effect transistors, combined with biomedical applications. Therefore, this study focuses on the development of dielectrophoresis assembly process, and uses ultraviolet light as the light gate of the molybdenum disulfide FET and the application of ion detection.
In this study, the Ansys simulation software was used to analyze the three-dimensional distribution of the electric field, and it was confirmed that the lens type electrode was the best electrode design. In the fabrication process, the MoS2 microsheets were produced by the liquid exfoliation method and the dielectrophoretic force was used. The results showed that the lens type electrode had the best assemble results. After the DEP assembly, the shift of center of mass of MoS2 microflakes was less than 1 μm on the electrode. In addition, the thickness measurements of the MoS2 FET were also measured using an atomic force microscope (AFM). In this study, a mechanical exfoliation method with the PDMS transfer was used in comparison with the DEP process. In the photoelectric response characteristics test, the results of MoS2 FET have the performance about 87% lower than that of the dry process.
This study was mainly applicable to pH detection. In the pH measurement experiments, the sensitivity of MoS2 FET sensor was 0.19 μA 1/2 / pH, and the response time was within 1 second. The pH detection interval is between pH 2 and 10. For the interference test, a significant detection error occurs when the sodium ion concentration is greater than 10-4 M.

Key words: DEP assembly, two dimensional nanomaterials, MoS2 microflakes, FET biosensors, ion detection
目錄 i
中文摘要 iii
Abstract v
圖目錄 vii
表目錄 xiv
第一章 緒論 1
1.1 生醫晶片檢測技術 1
1.1.1 以矽為基材的生醫感測器 2
1.1.2 以高分子材料為基材的生醫感測器 14
1.1.3 光觸發式生醫感測器 17
1.2 新穎二維半導體奈米材料 20
1.3 奈米材料操控技術 21
1.3.1 光學式奈米材料操控技術 21
1.3.2 電泳式奈米材料操控技術 22
1.3.3 介電泳式奈米材料操控技術 23
1.4 研究動機 26
1.5 研究目的與方法 26
1.6 論文架構 27
第二章 二硫化鉬奈米片之特性探討 28
2.1 二維過度金屬硫化物奈米材料介紹 28
2.2 二維奈米材料製程介紹 29
2.2.1 化學氣相沉積 30
2.2.2 濕式化學合成 30
2.2.3 離子佈植法 31
2.2.4 機械剝離法 32
2.2.5 液態剝離法 33
2.3 二硫化鉬光學性質探討 34
2.3.1 紫外光與可見光吸收光譜 34
2.3.2 拉曼光譜 35
2.3.3 光致發光光譜 36
2.4 二硫化鉬電子性質探討 37
2.5 光閘極式二硫化鉬場效電晶體元件設計 38
2.5.1 二硫化鉬場效電晶體元件 38
2.5.2 二硫化鉬與金屬間的能階特性探討 41
第三章 光閘極式場效電晶體設計及介電泳組裝二硫化鉬奈米片之技術與平台 44
3.1 光閘極式二硫化鉬場效電晶體元件設計 44
3.2 介電泳模型分析 44
3.2.1 介電泳原理 45
3.2.2 介電泳數學模型 46
3.2.3 介電泳與極化因子之關係 48
3.3 二硫化鉬液態剝離法製程 49
3.4 奈米片組裝平台與建構 51
3.5 有限元素法介電泳組裝模擬與分析 52
3.5.1 電極幾何形狀模擬與分析 52
3.5.2 三維空間電場模擬與分析 61
3.6 介電泳力自組裝二硫化鉬奈米片測試 66
3.6.1 不同電極形狀之組裝結果 67
3.6.2 原子力顯微鏡厚度量測 74
3.7 光閘極式二硫化鉬場效電晶體元件基本光電特性量測 75
3.8 二硫化鉬場校電晶體之電極材料特性比較 82
3.9 結論 85
第四章 光閘極式二硫化鉬場效電晶體元件應用於高靈敏離子檢測 86
4.1 場效電晶體式離子感測器之應用 86
4.2 場效電晶體式離子感測器之感測原理 86
4.3 實驗架構 87
4.4 光閘極式二硫化鉬場效電晶體之離子濃度檢測 88
4.5 結論 93
第五章 總結與未來發展 95
5.1 總結 95
5.2 研究成果 95
5.3 本研究之學術貢獻與創新 96
5.4 未來研究建議 100
附錄 101
參考文獻 103
作者簡介 112
[1] D. Grieshaber, R. MacKenzie, J. Vörös and E. Reimhult, "Electrochemical Biosensors - Sensor Principles and Architectures," Sensors, 2008, 8, 1400.
[2] K.-I. Chen, B.-R. Li and Y.-T. Chen, "Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation," Nano Today, 2011, 6, 131-154.
[3] M. Curreli, R. Zhang, F. N. Ishikawa, H.-K. Chang, R. J. Cote, C. Zhou and M. E. Thompson, "Real-time, label-free detection of biological entities using nanowire-based FETs," IEEE Transactions on Nanotechnology, 2008, 7, 651-667.
[4] D. Sarkar and K. Banerjee, "Proposal for tunnel-field-effect-transistor as ultra-sensitive and label-free biosensors," Applied Physics Letters, 2012, 100, 143108.
[5] K. Lee, P. R. Nair, A. Scott, M. A. Alam and D. B. Janes, "Device considerations for development of conductance-based biosensors," Journal of applied physics, 2009, 105, 102046.
[6] A. Uhlir, "Electrolytic shaping of germanium and silicon," Bell Labs Technical Journal, 1956, 35, 333-347.
[7] L. M. Bonanno, T. C. Kwong and L. A. DeLouise, "Label-free porous silicon immunosensor for broad detection of opiates in a blind clinical study and results comparison to commercial analytical chemistry techniques," Analytical chemistry, 2010, 82, 9711-9718.
[8] S. Arshavsky-Graham, R. Vilenski, F. Faratore, M. Bercovici and E. Segal, 1,000-fold Sensitivity Enhancement of Porous Si-based Optical Biosensors for Nucleic Acid and Proteins Detection, 2017, OmM4D. 6.
[9] G. Recio-Sanchez, G. Dominguez-Canizares, M. Manso, I. Preda, V. Torres-Costa, A. Gutierrez, L. Soriano and R. J. Martin-Palma, "Surface Functionalization of Nanostructured Porous Silicon by APTS: Toward the Fabrication of Electrical Biosensors of Bacterium Escherichia coli," Current Nanoscience, 2011, 7, 178-182.
[10] N. H. Al-Hardan, M. A. Abdul Hamid, N. M. Ahmed, A. Jalar, R. Shamsudin, N. K. Othman, L. Kar Keng, W. Chiu and H. N. Al-Rawi, "High sensitivity pH sensor based on porous silicon (PSi) extended gate field-effect transistor," Sensors, 2016, 16, 839.
[11] T.-W. Lin, P.-J. Hsieh, C.-L. Lin, Y.-Y. Fang, J.-X. Yang, C.-C. Tsai, P.-L. Chiang, C.-Y. Pan and Y.-T. Chen, "Label-free detection of protein-protein interactions using a calmodulin-modified nanowire transistor," Proceedings of the National Academy of Sciences, 2010, 107, 1047-1052.
[12] G.-J. Zhang, L. Zhang, M. J. Huang, Z. H. H. Luo, G. K. I. Tay, E.-J. A. Lim, T. G. Kang and Y. Chen, "Silicon nanowire biosensor for highly sensitive and rapid detection of Dengue virus," Sensors and Actuators B: Chemical, 2010, 146, 138-144.
[13] G. Presnova, D. Presnov, V. Krupenin, V. Grigorenko, A. Trifonov, I. Andreeva, O. Ignatenko, A. Egorov and M. Rubtsova, "Biosensor based on a silicon nanowire field-effect transistor functionalized by gold nanoparticles for the highly sensitive determination of prostate specific antigen," Biosensors and Bioelectronics, 2017, 88, 283-289.
[14] S. Iijima, "Helical microtubules of graphitic carbon," nature, 1991, 354, 56-58.
[15] J. Oh, G. Yoo, Y. W. Chang, H. J. Kim, J. Jose, E. Kim, J.-C. Pyun and K.-H. Yoo, "A carbon nanotube metal semiconductor field effect transistor-based biosensor for detection of amyloid-beta in human serum," Biosensors and Bioelectronics, 2013, 50, 345-350.
[16] F. A. Scholl, P. V. Morais, R. C. Gabriel, M. J. Schöning, J. R. Siqueira and L. Caseli, "Carbon Nanotubes Arranged As Smart Interfaces in Lipid Langmuir–Blodgett Films Enhancing the Enzymatic Properties of Penicillinase for Biosensing Applications," ACS Applied Materials & Interfaces, 2017, 9, 31054-31066.
[17] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films," Science, 2004, 306, 666-669.
[18] M. D. Stoller, S. Park, Y. Zhu, J. An and R. S. Ruoff, "Graphene-Based Ultracapacitors," Nano Letters, 2008, 8, 3498-3502.
[19] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres and A. K. Geim, "Fine Structure Constant Defines Visual Transparency of Graphene," Science, 2008, 320, 1308-1308.
[20] C. Lee, X. Wei, J. W. Kysar and J. Hone, "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene," Science, 2008, 321, 385-388.
[21] J. Chang, S. Mao, Y. Zhang, S. Cui, D. A. Steeber and J. Chen, "Single-walled carbon nanotube field-effect transistors with graphene oxide passivation for fast, sensitive, and selective proteindetection," Biosensors and Bioelectronics, 2013, 42, 186-192.
[22] Y. Lu, B. Goldsmith, D. R. Strachan, J. H. Lim, Z. Luo and A. T. C. Johnson, "High‐On/Off‐Ratio Graphene Nanoconstriction Field‐Effect Transistor," Small, 2010, 6, 2748-2754.
[23] P. Li, B. Zhang and T. Cui, "Towards intrinsic graphene biosensor: A label-free, suspended single crystalline graphene sensor for multiplex lung cancer tumor markers detection," Biosensors and Bioelectronics, 2015, 72, 168-174.
[24] L. Zhou, H. Mao, C. Wu, L. Tang, Z. Wu, H. Sun, H. Zhang, H. Zhou, C. Jia and Q. Jin, "Label-free graphene biosensor targeting cancer molecules based on non-covalent modification," Biosensors and Bioelectronics, 2017, 87, 701-707.
[25] W. Yuan and G. Shi, "Graphene-based gas sensors," Journal of Materials Chemistry A, 2013, 1, 10078-10091.
[26] C. H. Ahn, J.-W. Choi, G. Beaucage, J. H. Nevin, J.-B. Lee, A. Puntambekar and J. Y. Lee, "Disposable smart lab on a chip for point-of-care clinical diagnostics," Proceedings of the IEEE, 2004, 92, 154-173.
[27] Z. Zou, J. Han, A. Jang, P. L. Bishop and C. H. Ahn, "A disposable on-chip phosphate sensor with planar cobalt microelectrodes on polymer substrate," Biosensors and Bioelectronics, 2007, 22, 1902-1907.
[28] C.-C. Hong, C.-C. Lin, C.-L. Hong and P.-H. Chang, "Enhanced anesthetic propofol biochips by modifying molecularly imprinted nanocavities of biosensors," Biomedical microdevices, 2012, 14, 435-441.
[29] A. E. Becquerel, "Recherches sur les effets de la radiation chimique de la lumiere solaire au moyen des courants electriques," Comptes Rendus de L´Academie des Sciences, 1839, 9,
[30] L. Zhang, H. H. Mohamed, R. Dillert and D. Bahnemann, "Kinetics and mechanisms of charge transfer processes in photocatalytic systems: A review," Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13, 263-276.
[31] A. Devadoss, P. Sudhagar, C. Terashima, K. Nakata and A. Fujishima, "Photoelectrochemical biosensors: New insights into promising photoelectrodes and signal amplification strategies," Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 24, 43-63.
[32] D. Chen, H. Zhang, X. Li and J. Li, "Biofunctional Titania Nanotubes for Visible-Light-Activated Photoelectrochemical Biosensing," Analytical Chemistry, 2010, 82, 2253-2261.
[33] M. Zheng, Y. Cui, X. Li, S. Liu and Z. Tang, "Photoelectrochemical sensing of glucose based on quantum dot and enzyme nanocomposites," Journal of Electroanalytical Chemistry, 2011, 656, 167-173.
[34] S. Wang, Z.-X. Lin, W.-H. Wang, C. L. Kuo, K. C. Hwang and C.-C. Hong, "Self-regenerating photocatalytic sensor based on dielectrophoretically assembled TiO2 nanowires for chemical vapor sensing," Sensors and Actuators B: Chemical, 2014, 194, 1-9.
[35] Y. Lin, T. V. Williams and J. W. Connell, "Soluble, Exfoliated Hexagonal Boron Nitride Nanosheets," The Journal of Physical Chemistry Letters, 2010, 1, 277-283.
[36] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh and H. Zhang, "The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets," Nat Chem, 2013, 5, 263-275.
[37] X. Huang, Z. Zeng and H. Zhang, "Metal dichalcogenide nanosheets: preparation, properties and applications," Royal Society of Chemistry, 2013, 42, 1934-1946.
[38] M. Osada and T. Sasaki, "Exfoliated oxide nanosheets: new solution to nanoelectronics," Journal of Materials Chemistry, 2009, 19, 2503-2511.
[39] Q. Wang and D. O’Hare, "Recent Advances in the Synthesis and Application of Layered Double Hydroxide (LDH) Nanosheets," Chemical Reviews, 2012, 112, 4124-4155.
[40] H. Zhang, "Ultrathin Two-Dimensional Nanomaterials," ACS Nano, 2015, 9, 9451-9469.
[41] A. Ashkin, J. M. Dziedzic, J. Bjorkholm and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Optics letters, 1986, 11, 288-290.
[42] Y.-F. Chen, X. Serey, R. Sarkar, P. Chen and D. Erickson, "Controlled photonic manipulation of proteins and other nanomaterials," Nano letters, 2012, 12, 1633-1637.
[43] O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe and A. C. Ferrari, "Optical trapping and manipulation of nanostructures," Nature nanotechnology, 2013, 8, 807-819.
[44] A. Tiselius, "A new apparatus for electrophoretic analysis of colloidal mixtures," Transactions of the Faraday Society, 1937, 33, 524-531.
[45] F. Iwata, M. Kaji, A. Suzuki, S. Ito and H. Nakao, "Local electrophoresis deposition of nanomaterials assisted by a laser trapping technique," Nanotechnology, 2009, 20, 235303.
[46] H. A. Pohl, "The Motion and Precipitation of Suspensoids in Divergent Electric Fields," Journal of Applied Physics, 1951, 22, 869-871.
[47] H. A. Pohl, "Some effects of nonuniform fields on dielectrics," Journal of Applied Physics, 1958, 29, 1182-1188.
[48] S. Masuda, M. Washizu and I. Kawabata, "Movement of blood cells in liquid by nonuniform traveling field," IEEE transactions on Industry Applications, 1988, 24, 217-222.
[49] G. Fuhr, R. Hagedorn, T. Muller, B. Wagner and W. Benecke, Linear motion of dielectric particles and living cells in microfabricated structures induced by traveling electric fields, 1991, 259-264.
[50] Y. Huang, X.-B. Wang, J. Tame and R. Pethig, "Electrokinetic behaviour of colloidal particles in travelling electric fields: studies using yeast cells," Journal of Physics D: Applied Physics, 1993, 26, 1528.
[51] X. B. Wang, Y. Huang, F. F. Becker and P. R. C. Gascoyne, "A unified theory of dielectrophoresis and travelling wave dielectrophoresis," Journal of Physics D: Applied Physics, 1994, 27, 1571.
[52] M. P. Hughes, R. Pethig and X.-B. Wang, "Dielectrophoretic forces on particles in travelling electric fields," Journal of Physics D: Applied Physics, 1996, 29, 474.
[53] X.-B. Wang, Y. Huang, P. R. Gascoyne and F. F. Becker, "Dielectrophoretic manipulation of particles," IEEE transactions on industry applications, 1997, 33, 660-669.
[54] J. Boote and S. Evans, "Dielectrophoretic manipulation and electrical characterization of gold nanowires," Nanotechnology, 2005, 16, 1500.
[55] W. J. Liu, J. Zhang, L. J. Wan, K. W. Jiang, B. R. Tao, H. L. Li, W. L. Gong and X. D. Tang, "Dielectrophoretic manipulation of nano-materials and its application to micro/nano-sensors," Sensors and Actuators B: Chemical, 2008, 133, 664-670.
[56] P. Zhou, H. Yu, W. Yang, Y. Wen, Z. Wang, W. J. Li and L. Liu, "Spatial Manipulation and Assembly of Nanoparticles by Atomic Force Microscopy Tip-Induced Dielectrophoresis," ACS Applied Materials & Interfaces, 2017, 9, 16715-16724.
[57] K. F. Mak, K. He, J. Shan and T. F. Heinz, "Control of valley polarization in monolayer MoS2 by optical helicity," Nat Nano, 2012, 7, 494-498.
[58] H. Li, J. Wu, Z. Yin and H. Zhang, "Preparation and Applications of Mechanically Exfoliated Single-Layer and Multilayer MoS2 and WSe2 Nanosheets," Accounts of Chemical Research, 2014, 47, 1067-1075.
[59] J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist and V. Nicolosi, "Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials," Science, 2011, 331, 568-571.
[60] P. Joensen, R. F. Frindt and S. R. Morrison, "Single-layer MoS2," Materials Research Bulletin, 1986, 21, 457-461.
[61] Y. H. Lee, X. Q. Zhang, W. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. W. Wang, C. S. Chang, L. J. Li and T. W. Lin, "Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition," Advanced Materials, 2012, 24, 2320-2325.
[62] D. Yoo, M. Kim, S. Jeong, J. Han and J. Cheon, "Chemical Synthetic Strategy for Single-Layer Transition-Metal Chalcogenides," Journal of the American Chemical Society, 2014, 136, 14670-14673.
[63] M. B. Dines, "Lithium intercalation via n-Butyllithium of the layered transition metal dichalcogenides," Materials Research Bulletin, 1975, 10, 287-291.
[64] J. Zheng, H. Zhang, S. Dong, Y. Liu, C. Tai Nai, H. Suk Shin, H. Young Jeong, B. Liu and K. Ping Loh, "High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide," Nature Communications, 2014, 5, 2995.
[65] Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey and H. Zhang, "Single‐Layer Semiconducting Nanosheets: High‐Yield Preparation and Device Fabrication," Angewandte Chemie International Edition, 2011, 50, 11093-11097.
[66] Z. Zeng, T. Sun, J. Zhu, X. Huang, Z. Yin, G. Lu, Z. Fan, Q. Yan, H. H. Hng and H. Zhang, "An Effective Method for the Fabrication of Few‐Layer‐Thick Inorganic Nanosheets," Angewandte Chemie International Edition, 2012, 51, 9052-9056.
[67] Z. Zeng, C. Tan, X. Huang, S. Bao and H. Zhang, "Growth of noble metal nanoparticles on single-layer TiS2 and TaS2 nanosheets for hydrogen evolution reaction," Energy & Environmental Science, 2014, 7, 797-803.
[68] H. Li, Z. Yin, Q. He, H. Li, X. Huang, G. Lu, D. W. H. Fam, A. I. Y. Tok, Q. Zhang and H. Zhang, "Fabrication of Single- and Multilayer MoS2 Film-Based Field-Effect Transistors for Sensing NO at Room Temperature," Small, 2012, 8, 63-67.
[69] V. Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. Strano and J. N. Coleman, "Liquid Exfoliation of Layered Materials," Science, 2013, 340,
[70] K. R. Paton, E. Varrla, C. Backes, R. J. Smith, U. Khan, A. O’Neill, C. Boland, M. Lotya, O. M. Istrate, P. King, T. Higgins, S. Barwich, P. May, P. Puczkarski, I. Ahmed, M. Moebius, H. Pettersson, E. Long, J. Coelho, S. E. O’Brien, E. K. McGuire, B. M. Sanchez, G. S. Duesberg, N. McEvoy, T. J. Pennycook, C. Downing, A. Crossley, V. Nicolosi and J. N. Coleman, "Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids," Nat Mater, 2014, 13, 624-630.
[71] D.-S. Tsai, K.-K. Liu, D.-H. Lien, M.-L. Tsai, C.-F. Kang, C.-A. Lin, L.-J. Li and J.-H. He, "Few-Layer MoS2 with High Broadband Photogain and Fast Optical Switching for Use in Harsh Environments," ACS Nano, 2013, 7, 3905-3911.
[72] W. Choi, M. Y. Cho, A. Konar, J. H. Lee, G.-B. Cha, S. C. Hong, S. Kim, J. Kim, D. Jena, J. Joo and S. Kim, "High-Detectivity Multilayer MoS2 Phototransistors with Spectral Response from Ultraviolet to Infrared," Advanced Materials, 2012, 24, 5832-5836.
[73] H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier and D. Baillargeat, "From Bulk to Monolayer MoS2: Evolution of Raman Scattering," Advanced Functional Materials, 2012, 22, 1385-1390.
[74] B. C. Windom, W. G. Sawyer and D. W. Hahn, "A Raman Spectroscopic Study of MoS2 and MoO3: Applications to Tribological Systems," Tribology Letters, 2011, 42, 301-310.
[75] K. F. Mak, C. Lee, J. Hone, J. Shan and T. F. Heinz, "Atomically Thin MoS2: A New Direct-Gap Semiconductor," Physical Review Letters, 2010, 105, 136805.
[76] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli and F. Wang, "Emerging Photoluminescence in Monolayer MoS2," Nano Letters, 2010, 10, 1271-1275.
[77] R. v. Leeuwen, A. Castellanos-Gomez, G. A. Steele, H. S. J. v. d. Zant and W. J. Venstra, "Time-domain response of atomically thin MoS2 nanomechanical resonators," Applied Physics Letters, 2014, 105, 041911.
[78] Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen and H. Zhang, "Single-Layer MoS2 Phototransistors," ACS Nano, 2012, 6, 74-80.
[79] F. K. Perkins, A. L. Friedman, E. Cobas, P. M. Campbell, G. G. Jernigan and B. T. Jonker, "Chemical Vapor Sensing with Monolayer MoS2," Nano Letters, 2013, 13, 668-673.
[80] O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic and A. Kis, "Ultrasensitive photodetectors based on monolayer MoS2," Nat Nano, 2013, 8, 497-501.
[81] B. Radisavljevic, M. B. Whitwick and A. Kis, "Small-signal amplifier based on single-layer MoS2," Applied Physics Letters, 2012, 101, 043103.
[82] S. Ding, D. Zhang, J. S. Chen and X. W. Lou, "Facile synthesis of hierarchical MoS2 microspheres composed of few-layered nanosheets and their lithium storage properties," Nanoscale, 2012, 4, 95-98.
[83] M. Amani, M. L. Chin, A. G. Birdwell, T. P. O’Regan, S. Najmaei, Z. Liu, P. M. Ajayan, J. Lou and M. Dubey, "Electrical performance of monolayer MoS2 field-effect transistors prepared by chemical vapor deposition," Applied Physics Letters, 2013, 102, 193107.
[84] RadisavljevicB, RadenovicA, BrivioJ, GiacomettiV and KisA, "Single-layer MoS2 transistors," Nat Nano, 2011, 6, 147-150.
[85] H. Liu, K. Xu, X. Zhang and P. D. Ye, "The integration of high-k dielectric on two-dimensional crystals by atomic layer deposition," Applied Physics Letters, 2012, 100, 152115.
[86] J. Swerts, N. Peys, L. Nyns, A. Delabie, A. Franquet, J. W. Maes, S. Van Elshocht and S. De Gendt, "Impact of Precursor Chemistry and Process Conditions on the Scalability of ALD HfO2 Gate Dielectrics," Journal of The Electrochemical Society, 2010, 157, G26-G31.
[87] J. Yang, S. Kim, W. Choi, S. H. Park, Y. Jung, M.-H. Cho and H. Kim, "Improved Growth Behavior of Atomic-Layer-Deposited High-k Dielectrics on Multilayer MoS2 by Oxygen Plasma Pretreatment," ACS Applied Materials & Interfaces, 2013, 5, 4739-4744.
[88] W. van Roosbroeck and W. Shockley, "Photon-Radiative Recombination of Electrons and Holes in Germanium," Physical Review, 1954, 94, 1558-1560.
[89] Y. Yoon, K. Ganapathi and S. Salahuddin, "How Good Can Monolayer MoS2 Transistors Be?," Nano Letters, 2011, 11, 3768-3773.
[90] Y. Du, L. Yang, H. Liu and P. D. Ye, "Contact research strategy for emerging molybdenum disulfide and other two-dimensional field-effect transistors," APL Materials, 2014, 2, 092510.
[91] H. Liu, A. T. Neal and P. D. Ye, "Channel Length Scaling of MoS2 MOSFETs," ACS Nano, 2012, 6, 8563-8569.
[92] S. Das, H.-Y. Chen, A. V. Penumatcha and J. Appenzeller, "High Performance Multilayer MoS2 Transistors with Scandium Contacts," Nano Letters, 2013, 13, 100-105.
[93] J. Kang, D. Sarkar, W. Liu, D. Jena and K. Banerjee, A computational study of metal-contacts to beyond-graphene 2D semiconductor materials, 2012, 17.4.1-17.4.4.
[94] W. Liu, J. Kang, W. Cao, D. Sarkar, Y. Khatami, D. Jena and K. Banerjee, High-performance few-layer-MoS2 field-effect-transistor with record low contact-resistance, 2013, 19.4.1-19.4.4.
[95] S. Walia, S. Balendhran, Y. Wang, R. A. Kadir, A. S. Zoolfakar, P. Atkin, J. Z. Ou, S. Sriram, K. Kalantar-zadeh and M. Bhaskaran, "Characterization of metal contacts for two-dimensional MoS2 nanoflakes," Applied Physics Letters, 2013, 103, 232105.
[96] P. Pulay, G. Fogarasi, F. Pang and J. E. Boggs, "Systematic ab initio gradient calculation of molecular geometries, force constants, and dipole moment derivatives," Journal of the American Chemical Society, 1979, 101, 2550-2560.
[97] P. Bergveld, "Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements," IEEE Transactions on Biomedical Engineering, 1970, BME-17, 70-71.
[98] L. Bousse, H. H. van den Vlekkert and N. F. de Rooij, "Hysteresis in Al2O3-gate ISFETs," Sensors and Actuators B: Chemical, 1990, 2, 103-110.
[99] M.-N. Niu, X.-F. Ding and Q.-Y. Tong, "Effect of two types of surface sites on the characteristics of Si3N4-gate pH-ISFETs," Sensors and Actuators B: Chemical, 1996, 37, 13-17.
[100] Y.-L. Chin, J.-C. Chou, T.-P. Sun, H.-K. Liao, W.-Y. Chung and S.-K. Hsiung, "A novel SnO2/Al discrete gate ISFET pH sensor with CMOS standard process," Sensors and Actuators B: Chemical, 2001, 75, 36-42.
[101] Y. Cui, Q. Wei, H. Park and C. M. Lieber, "Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species," Science, 2001, 293, 1289.
[102] A. Ortiz-Conde, F. G. Sánchez, J. J. Liou, A. Cerdeira, M. Estrada and Y. Yue, "A review of recent MOSFET threshold voltage extraction methods," Microelectronics Reliability, 2002, 42, 583-596.
[103] J.-C. Lin, B.-R. Huang and Y.-K. Yang, "IGZO nanoparticle-modified silicon nanowires as extended-gate field-effect transistor pH sensors," Sensors and Actuators B: Chemical, 2013, 184, 27-32.
[104] A. Das, D. H. Ko, C.-H. Chen, L.-B. Chang, C.-S. Lai, F.-C. Chu, L. Chow and R.-M. Lin, "Highly sensitive palladium oxide thin film extended gate FETs as pH sensor," Sensors and Actuators B: Chemical, 2014, 205, 199-205.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *