帳號:guest(18.116.50.234)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王威翔
作者(外文):Wang, Wei-Hsiang.
論文名稱(中文):固定床捕碳劑吸附反應器提升溫度均勻性之研究
論文名稱(外文):On improvement of temperature uniformity in fixed bed reactors with CO2 capture sorbents
指導教授(中文):許文震
指導教授(外文):Sheu, Wen-Jenn
口試委員(中文):陳炎洲
余慶聰
口試委員(外文):Chen, Yen-Chou
Yu, Ching-Tsung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:104033524
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:81
中文關鍵詞:氧化鈣吸附固定床均溫設計
外文關鍵詞:Calcium oxide absorptionFixed bedUniform temperature design
相關次數:
  • 推薦推薦:0
  • 點閱點閱:545
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本文借助COMSOL套裝軟體,以數值模擬方式探討固定床捕碳劑吸附反應器提升溫度均勻性之研究,討論在不同材質、加裝不同數量導熱鰭片、反應管內部或外部加熱的反應器,改善內部溫度均勻性以提升CaO吸附CO2之性能及降低所需之能耗。利用各種不同條件,使反應管內部溫度分布更均勻,讓CaO捕碳劑可以發揮其最大效益,並將吸附之所需成本—單位加熱量(W)、吸附時間及總能耗一併討論。數值模擬結果顯示,在加熱管定溫為973K的情況下,入口氣體溫度為600K時,若將一般之反應圓管直徑由1吋放大到4吋時,管長由250 (mm)放大到500 (mm),則管內最大溫差會變大,管內平均溫度下降,若考量體積大小的單位CO2吸附量結果,吸附效率將剩48%。而在反應器中加入不同數量導熱鰭片裝置,可以有效的提升管內平均溫度,並減小最大溫差。數值模擬結果得知,裝入不同數量導熱裝置,其最理想內管半徑會隨材質、鰭片數及內外部加熱方法而有所不同。若數值模擬分析下的能耗,鰭片數愈多,吸附效益愈佳;若是數值模擬固定反應管吸附平均轉化率,鰭片數愈多,所需能耗愈小,此關鍵在於吸附時間的差異。

關鍵字: 氧化鈣吸附、固定床、均溫設計
The paper is to design a uniform temperature distribution in a scale-up fixed bed reactors with different materials, inserting numerous internal heat conducting device and different heating methods by numerical simulation of COMSOL software. The performance of CaO sorbents, some of capture efficiency including energy consumption can be improved due to improvement of temperature uniformity. In fact, all of our efforts are to achieve a cost reduction. The simulation result demonstrates that the performance of absorption is only 48% at 973K for the original design as the diameter of the reaction tube is increased from 1 inch to 4 inches, and the length of the tube is changed from 250 (mm) to 500 (mm). The reactor can be effectively improved by adding numerous internal heat conducting device because the temperature distribution in reactor becomes more uniform. The results also show that the best internal radius will vary with the material, the number of fins and internal or external heating method. The numerical simulation method shows adding more axial fins in reactors can decrease unit energy consumption. Last but not least, the numerical simulation method demonstrate that adding more axial fins in reactors can decrease total energy consumption.in the condition of fixing average conversion ,and the key point is time of absorption.

Keywords : Calcium oxide absorption, Fixed bed, Uniform temperature design.
摘要 I
Abstract II
致謝 III
第一章、前言 1
1.1、研究背景 1
1.2、研究目的 3
第二章、文獻回顧 4
2.1、二氧化碳捕獲分離技術 4
2.2、鈣鎂捕碳劑 7
2.3、改質氧化鈣 10
2.4、水合反應 13
2.5、二氧化碳捕獲反應器 18
2.5.1、流體化床 18
2.5.2、固定床 19
2.6、理論再生能耗 20
2.7、CaO吸附反應 23
第三章、數值模型模擬 26
3.1、模擬軟體介紹 26
3.2、模型幾何參數設定 26
3.3、模型分析 28
3.3.1、模擬進行之物理假設 29
3.3.2、統御方程式及數值方法 30
3.3.3、化學動力學 31
3.3.4、模擬參數設定 32
3.3.5、邊界條件 34

3.4、模擬分析數值方法說明 35
3.5、模擬分析目標 37
3.5.1、暫態模擬分析 37
3.5.2、穩態模擬分析 37
3.5.3、模擬分析實施步驟 38
3.5.4、反應器尺寸對CO2吸附性能的影響 39
3.5.5、探討加裝內部加熱零件之最理想管內半徑(最佳Ri) 40
3.5.6、不同材質、導熱鰭片,以及加熱方式對CO2吸附性能的影響 41
第四章、結果與討論 42
4.1、反應器尺寸對CO2吸附性能的影響 43
4.2、探討加裝內部加熱零件之最理想管內半徑(最佳Ri) 45
4.3、不同材質、導熱鰭片,以及加熱方式對CO2吸附性能的影響 55
4.3.1、入口氣體溫度300K,3 ~ 6軸向鰭片管狀反應器,材質為不鏽鋼或 56
4.3.2、入口氣體溫度850K,3 ~ 6軸向鰭片管狀反應器,材質為不鏽鋼或 62
4.3.3、平均轉化率X = 0.65,入口氣體溫度850K,3 ~ 6軸向鰭片管狀反應器,材質為不鏽鋼或銅之暫態吸附能耗比較 68
第五章、結論 72
5.1、結論 72
5.2、未來展望 74
參考文獻 75

[1] 謝宗育,“固定床捕碳劑再生反應器製成放大之均溫設計,”碩士論文, 動力機械工程學系, 國立清華大學, 2016.
[2] S. D. Kenarsari, D. Yang, G. Jiang, S. Zhang, J. Wang, A. G. Russell, Q. Wei, M. Fan, “Review of Recent Advances in Carbon Dioxide Separation and Capture,” RSC Adv, 3, pp. 22739- 22773, 2013.
[3] D. Y. C. Leung, G. Caramanna, M. M. Maroto- Valer, “An Overview of Current Status of Carbon Dioxide Capture and Storage Technologies,” Renewable and Sustainable Energy Reviews, Vol. 39, pp. 426- 443, 2014.
[4] 陳君豪, “利用真空變壓吸附法濃縮及回收二氧化碳,” 碩士論文, 化學工程學系, 國立中央大學, 2001.
[5] 吳國光, 陳建仲, “利用快速變壓吸附法產製微富氧研究,” 中國機械工程學會第二十四屆全國學術研討會論文集, 2007.
[6] W. L. Badger, J. T. Banchero, “Introduction to Chemical Engineering,” McGraw- Hill Book Company, 1995.
[7] Q. Wang, J. Luo, Z. Zhong, A. Borgna, “CO2 Capture by Solid Adsorbents and Their Applications: Current Status and New Trends”, Energy Environ. Sci., Vol. 4, pp. 42- 55, 2011.
[8] 陳勇, 王從厚, 吳鳴, “氣體膜分離技術與應用,” 化學工業出版社, 2004.
[9] D. Aaron, C. Tsouris, “Separation of CO2 from Flue Gas: A Review,” Energy Separation Science and Technology, Vol. 40, pp. 321- 348, 2005.
[10] J. Wang, L. Huang, R. Yang, Z. Zhang, J. Wu, Y. Gao, Q. Wang, Z. Zhong, “Recent Advances in Solid Sorbents for CO2 Capture and New Development Trends,” Energy Environ. Sci. , Vol. 7, pp. 3478- 3518, 2014.
[11] L. Li, X. Wen, X. Fu, F. Wang, N. Zhao, F. Xiao, W. Wei, Y. Sun, “MgO/ Al2O3 Sorbent for CO2 Capture,” Energy Fuels, Vol. 24, pp. 5773- 5780, 2010.
[12] G. Xiaoa, R. Singha, A. Chaffeeb, P. Webleya, “Advanced Adsorbents Based on MgO and K2CO3 for Capture of CO2 at Elevated Temperatures,” International Journal of Greenhouse Gas Control, Vol. 5, pp. 634- 639, 2011.
[13] W. J. Liu, H. Jiang, K. Tian, Y.W. Ding, H.Q. Yu, “Mesoporous Carbon Stabilized MgO Nanoparticles Synthesized by Pyrolysis of MgCl2 Preloaded Waste Biomass for Highly Efficient CO2 Capture,” Environ Sci Technol, Vol. 47, pp. 9397- 9430, 2013.
[14] C. H. Leea, S. Munb, K. B. Leea, “Characteristics of Na- Mg Double Salt for High- temperature CO2 Sorption,” Chemical Engineering Journal, Vol. 258, pp. 367- 373, 2014.
[15] L. S. Fan, L. Zeng, W. Wang, S. Luo, “Chemical Looping Processes for CO2 Capture and Carbonaceous Fuel Conversion- prospect and Opportunity,” Energy Environ. Sci. , Vol. 5, pp. 7254-7280, 2012.
[16] M. V. Iyer, H. Gupta, B. B. Sakadjian, L. Fan, “Multicyclic Study on the Simultaneous Carbonation and Sulfation of High Reactivity CaO,” Ind. Eng. Chem. Res. , Vol. 43, pp. 3939- 3947, 2004.
[17] A. I. Lysikov, A. N. Salanov, A. G. Okunev, “Change of CO2 Carrying Capacity of CaO in Isothermal Recarbonation- decomposition Cycles,” Ind. Eng. Chem. Res. , Vol. 46, pp. 4633- 4638, 2007.
[18] C. Qin, W. Liu, H. An, J. Yin, B. Feng, “Fabrication of CaO- based Sorbents for CO2 Capture by a Mixing Method,” Environ Sci Technol, Vol. 46, pp. 1932- 1939, 2012.
[19] B. Feng, W. Liu, X. Li, H. An, “Overcoming the Problem of Loss-in-Capacity of Calcium Oxide in CO2 Capture,” Energy and Fuels, Vol. 20, pp. 2417- 2420, 2006.
[20] D. Mess, A. F. Sarofim, J. P. Longwell, “Product Layer Diffusion During the Reaction of Calcium Oxide with Carbon Dioxide,” Energy and Fuels, Vol. 13, pp. 999- 1005, 1999.
[21] H. Lu, E. P. Reddy, P. G. Smirniotis, “Calcium Oxide Based Sorbents for Capture of Carbon Dioxide at High Temperatures,” Ind. Eng. Chem. Res, Vol. 45, pp. 3944- 3949, 2006.
[22] C. Salvador, E. J. Anthony, J. C. Abanades, “Enhancement of CaO for CO2 Capture in an FBC Environment,” Chemical Engineering Journal,” Vol. 96, pp. 187- 195, 2003.
[23] A. Coppola, P. Salatino, F. Montagnaro, F. Scala, “Repetitive Carbonation- calcination Reactions of Ca- based Sorbents for Efficient CO2 Sorption at Elevated Temperatures and Pressures,” Ind. Eng. Chem. Res., Vol. 42, pp. 975- 981, 2003.
[24] F. C. Yu, N. Phalak, Z. Sun, L. - S. Fan, “Activation Strategies for Calcium- based Sorbents for CO2 Capture: A Perspective,” Ind. Eng. Chem. Res. , Vol. 51, pp. 2133- 2142, 2012.
[25] S. Dobner, L. Sterns, R. A. Graff, A. M. Squires, “Cyclic Calcination and Recarbonation of Calcined Dolomite,” Ind. Eng. Chem. Res. , Vol. 16, pp. 479- 486, 1977.
[26] C. Wang, L. Jia, Y. Tan, E. J. Anthony, “Carbonation of Fly Ash in Oxy- fuel CFB Combustion,” Fuel, Vol. 87, pp. 1108- 1114, 2008.
[27] S. Yang, Y. Xiao, “Steam Catalysis in CaO Carbonation under Low Steam Partial Pressure,” Ind. Eng. Chem. Res. , Vol. 47, pp. 4043- 4048, 2008.
[28] Y. Wang, S. Lin, Y. Suzuki, “Limestone Calcination with CO2 Capture(II): Decomposition in CO2/ steam and CO2/N2 Atmospheres,” Energy Fuels, Vol. 22, pp. 2326- 2331, 2008.
[29] Y. Wang, S. Lin, Y. Suzuki, “Experimental Study on CO2 Capture Conditions of a Fluidized Bed Limestone Decomposition Reactor,” Fuel Process. Technol. , Vol. 91, pp. 958- 963, 2010.
[30] 李中光, 劉新校, 楊鈺琥, 王照元, 侯佳蕙, “層狀複金屬氧化物(LDHs) 在污染防治上之應用: (一) 基本性質、製備及鑑定,” 環保簡訊, 第17期.
[31] V. Manovic, E. J. Anthony, “Reactivation and Remaking of Calcium Aluminate Pellets for CO2 Capture,” Fuel, Vol. 90, pp. 233- 239, 2011.
[32] P. H. Chang, Y. P. Chang, S. Y. Chen, C. T. Yu, Y. P. Chyou, “Ca- rich Ca- Al- Oxide, High- temperature- stable Sorbents Prepared from Hydrotalcite Precursors: Synthesis, Characterization, and CO2 Capture Capacity,” ChemSusChem, Vol. 4, pp. 1844- 1851, 2011.
[33] Z. Zhou, Y. Qi, M. Xie, Z. Cheng, W. Yuan, “Synthesis of CaO- based Sorbents Through Incorporation of Alumina/Aluminate and Their CO2 Capture Performance,” Chemical Engineering Science, Vol. 74, pp. 172- 180, 2012.
[34] E. T. Santos, C. Alfonsin, A. J. S. Chambel, A. Fernandes, A. P. Soares Dias, C. I. C. Pinheiro, M. F. Ribeiro, “Investigation of a Stable Synthetic Sol- gel CaO Sorbent for CO2 Capture,” Fuel, Vol. 94, pp. 624- 628, 2012.
[35] 陳以銘, 陳威錦, 余慶聰, “柱狀捕碳劑工程量產與反應器測試,” 環境工程會刊, 第105卷, 2014.
[36] R. W. Hughes, J. Wang, E. J. Anthony, “Design Process Simulation and Construction of an Atmospheric Dual Fluidized Bed Combustion System for in Situ CO2 Capture Using High- temperature Sorbents,” Fuel Process. Technol. , Vol. 86, pp. 1523- 1531, 2005.
[37] V. Materić, C. Sheppard, S. l. Smedley, ”Effect of Repeated Steam Hydration Reactivation on CaO- based Sorbents for CO2 Capture,” Environ. Sci. Technol. , Vol. 44, pp. 9496- 9501, 2010.
[38] O. Levenspiel, “Chemical Reaction Engineering,” John Wiley & Sons Book Company, 3rd edition, pp. 477- 470, 1999.
[39] G. F. Froment, K. B. Bischoff, J. D. Wilde, “Chemical Reactor Analysis and Design,” John Wiley & Sons Book Company, 3rd edition, pp. 719 - pp. 731, 2010.
[40] E. Kimball, H. P. Hamers, P. Cobden, F. Gallucci, M. van Sint Annaland, “Operation of Fixed- bed Chemical Looping Combustion,” Energy Procedia, Vol. 37, pp. 575- 579, 2013.
[41] W. Zhang, H. Liu, C. Sun, T. C. Drage, C. E. Snape, “Performance of Polyethyleneimine- silica Adsorbent for Post- Combustion CO2 Capture in a Bubbling Fluidized Bed,” Chemical Engineering Journal, Vol. 251, pp. 293- 303, 2014.
[42] M. L. Gray, J. S. Hoffman, D. C. Hreha, D. J. Fauth, S. W. Hedges, K. J. Champagne, H. W. Pennline, “Parametric Study of Solid Amine Sorbents for the Capture of Carbon Dioxide,” Energy Fuels, Vol. 23, pp. 4840- 4844, 2009.
[43] A. H. Berger, A. S. Bhown, “Comparing Physisorption and Chemisorption Solid Sorbents for Use Separating CO2 from Flue Gas Using Temperature Swing Adsorption,” Energy Procedia, Vol. 4, pp. 562- 567, 2011.
[44] A. Martínez, Y. Lara, P Lisbona, L. M. Romeo, “Energy Penalty Reduction in the Calcium Looping Cycle,” International Journal of Greenhouse Gas Control, Vol. 7, pp. 74- 81, 2012.
[45] S. Sjostrom, H. Krutka, “Evaluation of Solid Sorbents as a Retrofit Technology for CO2 Capture,” Fuel, Vol. 89, pp. 1298- 1306, 2010.
[46] 陳奕岑, 白曛綾,“以改質氧化鈣捕獲二氧化碳氣體之循環再生能力研究,”碩士論文, 環境工程研究所, 國立交通大學, 2008.
[47] Y. Li, C. Zhao, L. Duan, C. Liang, Q. Li, W. Zhou, H. Chen, “Cyclic Calcination/ carbonation Looping of Dolomite Modified with Acetic Acid for CO2 Capture,” Fuel Processing Technology, Vol. 89, pp. 1461- 1469, 2008.
[48] M. Mofarahi, P. Roohi, F. Farshadpoor, “Study of CaO Sorbent for CO2 Capture from Flue Gases, Vol. 17, pp. 403- 408, 2009.
[49] L. Yang, H. Yu, S. Wang, H. Wang, Q. Zhou, “Carbon Dioxide Captured from Flue Gas by Modified Ca- based Sorbents in Fixed- bed Reactor at High Temperature,” Chinese Journal of Chemical Engineering, Vol. 21, pp. 199- 204, 2013.
[50] C. Luo, Y. Zheng, N. Ding, Q. Wu, G. Bian, C. Zheng, “Development and Performance of CaO/ La2O3 Sorbents during Calcium Looping Cycles for CO2 Capture,” Ind. Eng. Chem. Res. ,Vol. 49, pp. 11778- 11784, 2010.
[51] B. Dou, Y. Song, Y. Liu, C. Feng, “High Temperature CO2 Capture Using Calcium Oxide Sorbent in a Fixed- bed Reactor,” Journal of Hazardous Materials, Vol. 183, pp. 759- 765, 2010.
[52] R. Sun, Y. Li, H. Liu, S. Wu, C. Lu, “CO2 Capture Performance of Calcium- based Sorbent Doped with Manganese Salts during Calcium Looping Cycle,” Applied Energy, Vol. 89, pp. 368- 373, 2012.
[53] S. Stendardo, P. Ugo Foscolo, “Carbon Dioxide Capture with Dolomite:A Model for Gas- solid Reaction within the Grains of a Particulate Sorbent,” Chemical Engineering Science, Vol. 64, pp. 2343- 2352, 2009.
[54] K. R. Rout, H. A. Jakobsen, “A Numerical Study of Pellets Having Both Catalytic- and Capture Properties for SE-SMR process: Kinetic- and Product Layer Diffusion Controlled Regimes,” Fuel Processing Technology, Vol. 106, pp. 231- 246, 2013.
[55] 劉晉奇, 褚晴暉, ”有限元素分析與ANSYS的工程應用,” 滄海書局, pp. 166- 169, 2006.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *