帳號:guest(18.116.23.158)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡耿榕
作者(外文):Tsai, Keng-Jung
論文名稱(中文):應用晶格波茲曼法及局部加密網格於圖形顯示卡叢集計算平板流
論文名稱(外文):Simulation of channel flow with lattice Boltzmann method and local grid refinement on multi-GPU cluster
指導教授(中文):林昭安
指導教授(外文):Lin, Chao-An
口試委員(中文):陳慶耀
林洸銓
口試委員(外文):Chen, Ching-Yao
Lin, Kuang-C.
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:104033520
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:58
中文關鍵詞:晶格波茲曼法平板流局部網格加密圖形顯示卡
外文關鍵詞:lattice Boltzmann methodchannel flowlocal grid refinementmulti-blockGPUCUDA
相關次數:
  • 推薦推薦:0
  • 點閱點閱:313
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
晶格波茲曼法一般是使用均勻網格,但是在高雷諾數下物理變化較大的區域需要更精密的網格,局部加密的網格能改善這問題。本論文中,利用晶格波茲曼法及局部加密網格,在多張圖顯示卡上計算,加速模擬效率。前後許多學者已提出關於晶格波茲曼法的加密方式,然而在本論文中模擬二維及三維平板流,來驗證單鬆弛時間的局部網格加密之間的傳值、差分方法以及邊界條件在完全發展的平板流中與解析解相符合。此外本論文也探討局部加密網格相較於完全均勻網格能在計算中能節省的記憶體,以及一維切割的平行計算下,在不同圖形顯示卡中的平行效率。
In general, the lattice Boltzmann method is based on the uniform lattice. However, in order to simulate at high Reynolds number or in fine grid size, the local refinement strategy is advantageous. In this thesis, the local grid refinement and the multi-block method are employed here. The local grid refinement scheme does not only improve the accuracy but also economize the computing resource. The single relaxation time model is adopted to compute two and three-dimensional channel flow here, and the simulation in three dimensions is calculated on multi-GPU. Both the results of 2-D and 3-D match the analytical solutions. The relation between different blocks, interface structure, and the spatial interpolation would be investigated in this thesis. Additionally, the economized memory and the parallel performance tested by strong scaling tests are also discussed.
Introduction 1
1.1 Introduction 1
1.2 Literature survey 3
1.2.1 Theory of lattice Boltzmann models 3
1.2.2 Local Grid Refinement for LBGK Models 3
1.2.3 Multi-block on lattice Boltzmann method 4
1.2.4 Boundary conditions 5
1.2.5 2D and 3D Poiseuille flow 6
1.2.6 GPU implementation 6
1.3 Motivation 7
Methodology 8
2.1 The Boltzmann equation 8
2.2 The BGK approximation 9
2.3 The low-Mach-number approximation 12
2.4 Discretization of the Boltzmann equation 13
2.4.1 Discretization of time 13
2.4.2 Discretization of phase space 14
2.5 The Chapman-Enskog expansion 17
Numerical Algorithm 19
3.1 Simulation procedure 19
3.1.1 Single relaxation time lattice Boltzmann method 19
3.2 Local Grid Refinement 20
3.2.1 The grid refinement of singe-relaxation-time scheme 20
3.2.2 The Interface Structure and Computational Procedure 23
3.2.3 Interpolation Scheme 23
3.2.4 The Algorithm of Multi-Blocks Scheme 25
3.3 Boundary condition implementations 26
3.4 The external forcing term 27
3.5 GPU implementation 27
3.6 One dimensional domain decomposition 28
Numerical results 36
4.1 Two dimensional Poiseuille flow 36
4.2 Three dimensional Poiseuille flow 37
4.2.1 Memory savings 38
4.3 Parallel performance 38
Conclusions 48
Bibliography 49
[1] U. Frisch, B. Hasslacher, and Y. Pomeau, "Lattice-gas automata for the Navier-Stokes equation," Phys. Rev. Lett. 56, 1505, (1986).

[2] S. Wolfram, "Cellular automata fluids 1: Basic theory,"J. Stat. Phys. 45, 471(1986).

[3] S. Succi, E. Foti, and F. J. HIGUERA, "Three-Dimensional Flows in Complex
Geometries with the Lattice Boltzmann Method," Europhysics Letters 9, 345,
(1989).

[4] F. J. Higuera, and J. Jemenez, "Boltzmann approach to lattice gas simulations," Europhysics Letters 9, 663, (1989).

[5] P. L. Bhatnagar, E. P. Gross, and M. Grook, "A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems," Physics Reviews E 94, 511, (1954).

[6] S. Harris, "An introduction to the theory of the Boltzmann equation", Holt, Rinehart and Winston, New York, (1971). 17, 479, (1992).

[7] S. Chen, H. Chen, D. O. Martinez, and W. H. Matthaeus, “Lattice Boltzmann model for simulation of magnet hydrodynamics," Phys. Rev. Lett. 67, 3776,
(1991).

[8] Y. H. Qian, D. d'Humieres, and P. Lallemand, "Lattice BGK model for Navier-Stokes equation", Europhysics Letters 17, 479, (1992).

[9] S. Chen and G. D. Doolen, "Lattice Boltzmann method for fluid flow", Annual Reviews of Fluid Mechanics 30 329, (1998).

[10] H. Chen, S. Chen, and W. H. Matthaeus, "Recovery of the Navier-Stokes equations using a lattice gas Boltzmann method", Physics Reviews A 45, R5339,(1992).

[11] S. Ansumali, and I. V. Karlin, "Entropy function approach to Lattice Boltzmann Method", Journal of Statistical Physics 107, Nos.1/2, (2002).

[12] I. V. Karlin, S. Succi, and S. S. Chikatamarla, Comment on "Numerical of the lattice Boltzmann method: Effects of collision models on lattice Boltzmann simulations", American Physical Society Physical review 84, 098701, (2011).

[13] L. S. Lin, H. W. Chang, C. A. Lin, "Multi relaxation time lattice Boltzmann simulations of transition in deep 2D lid driven cavity using GPU", Computers and Fluids 80, 381, (2013).

[14] C. Obrecht, F. Kuznik, B. Tourancheau, and J. J. Roux, "Multi-GPU implementation of a hybrid thermal lattice Boltzmann solver using the TheLMA framework", Comput. Fluids 80, 269, (2013).

[15] C. Obrecht, F. Kuznik, B. Tourancheau, and J. J. Roux, "Multi-GPU implementation of the lattice Boltzmann method", Comput. Math. Appl 65, 252, (2013).

[16] X.Wang, T. Aoki, "Multi-GPU performance of incompressible flow computation by lattice Boltzmann method on GPU cluster", Parallel. Computing 37, 521, (2011).

[17] C. Obrecht, F. Kuznik, B. Tourancheau, and J. J. Roux, "Scalable lattice Boltzmann solvers for CUDA GPU clusters", Comput. Fluids 39, 259, (2013).

[18] C. Obrecht, F. Kuznik, B. Tourancheau, J. J. Roux, "A new approach to the lattice Boltzmann method for graphics processing units", Computers and Mathematics with Applications 61, 3628, (2011).

[19] F. Kuznik, C. Obrecht, G. Rusaouen, "J. J. Roux, LBM based flow simulation using GPU computing processor", Computers and Mathematics with Applications 59, 2380, (2010).

[20] J. Tolke, "Implementation of a lattice Boltzmann kernel using the compute unified device architecture developed by NVIDIA", Comput. Vis. Sci 13, 29, (2010).

[21] G. R. McNamara, and G. Zanetti, "Use of the Boltzmann equation to simulate lattice-gas automata," Phys. Rev. Lett. 61, 2332, (1988).

[22] F. J. Higuera, and J. Jimenez, "Boltzmann approach to lattice gas simulations," Europhys. Lett. 9, 663, (1989).

[23] H. Chen, S. Chen, and W. H. Matthaeus, "Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method," Phys. Rev. A. 45, 5339,(1992).

[24] Y. H. Qian, D. d'Humieres, and P. Lallemand, "Lattice BGK models for Navier-Stokes equation," Europhys. Lett. 17, 479, (1992).

[25] X. He, and L. S. Luo, "Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation," Phys. Rev. E 56,6811, (1997).

[26] X. He, and L. S. Luo, "A priori derivation of the lattice Boltzmann equation," Phys. Rev. E 55, 6333, (1997).

[27] K. Kono, T. Ishizuka, H. Tsuda, and A. Kurosawa, "Application of lattice Boltzmann model to multiphase flows with phase transition," Comput. Phys.Commun. 129, 110, (2000).

[28] S. Hou, X. Shan, Q. Zou, G. D. Doolen, and W. E. Soll, "Evaluation of two lattice Boltzmann models for multiphase flows," J. Comput. Phys. 138, 695,(1997).

[29] X. He, S. Chen, and R. Zhang, "A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability," J. Comput. Phys. 152, 642, (1999).

[30] C. H. Shih, C. L. Wu, L. C. Chang, and C. A. Lin, "Lattice Boltzmann simulations of incompressible liquid–gas systems on partial wetting surfaces, "Phil. Trans. R. Soc. A 369, 2510, (2011).

[31] M. Krafczyk, M. Schulz, and E. Rank, "Lattice-gas simulations of two-phase flow in porous media," Commun. Numer. Meth. Engng 14, 709, (1998).

[32] J. Bernsdorf, G. Brenner, and F. Durst, "Numerical analysis of the pressure drop in porous media flow with lattice Boltzmann (BGK) automata," Comput. Phys. Commun. 129, 247, (2000).

[33] D. M. Freed, "Lattice-Boltzmann method for macroscopic porous media modeling," Int. J. Mod. Phys. C 9, 1491, (1998).

[34] Y. Hashimoto, and H. Ohashi, "Droplet dynamics using the lattice-gas method," Int. J. Mod. Phys. 8, 977, (1997).

[35] H. Xi, and C. Duncan, "Lattice Boltzmann simulations of three-dimensional single droplet deformation and breakup under simple shear flow," Phys. Rev.E 59, 3022, (1999).

[36] O. Filippova and D. H¨anel "Grid Refinement for Lattice-BGK Models " J. Comput. Phys. 147,219-228(1998)

[37] M. J. Berger and P. Colella, "Local adaptive mesh refinement for shock hydrodynamics", J. Comput. Phys. 82, 67 (1989).

[38] J. J. Quirk, "An adaptive grid algorithm for computational shock hydrodynamics", Ph.D. thesis, Cranfield Inst. of Technology, UK, 1991.

[39] Alexandre Dupuis and Bastien Chopard "Theory and applications of an alternative lattice Boltzmann grid refinement algorithm" Phys. Rev E67,066707(2003)

[40] D. Yu, R. Mei, and W. Shyy, "A multi-block lattice Boltzmann method for viscous fluid flows", Int. J. Numer. Meth. Fluids 2002; 39:99–120 (DOI: 10.1002/fld.280)

[41] X. He, Q. Zou, L. S. Luo, and M. Dembo, "Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model," J. Stat. Phys. 87, 115, (1997).

[42] P. A. Skordos, "Initial and boundary conditions for the lattice Boltzmann method," Phys. Rev. E 48, 4823, (1993).

[43] D. R. Noble, S. Chen, J. G. Georgiadis, and R. O. Buckius, "A consistent hydrodynamics boundary condition for the lattice Boltzmann method," Phys. Fluids 7, 203, (1995).

[44] T. Inamuro, M. Yoshino, and F. Ogino, "A non-slip boundary condition for lattice Boltzmann simulations," Phys. Fluids 7, 2928, (1995).


[45] J. Tolke, "Implementation of a lattice Boltzmann kernel using the compute unified device architecture developed by NVIDIA," Comput. Visual Sci. 13,29, (2008).

[46] J. Tolke, and M. Krafczyk, "TeraFLOP computing on a desktop PC with GPUs for 3D CFD," Int. J. Comput. Fluid D. 22, 443, (2008)

[47] E. Riegel, T. Indinger, and N. A. Adams, "Implementation of a Lattice-Boltzmann method for numerical fluid mechanics using the NVIDIA CUDA technology," CSRD 23, 241, (2009).

[48] F. Kuznik, C. Obrecht, G. Rusaouen, and J. J. Roux, "LBM based flow simulation using GPU computing processor," Comput. Math. Appl. 59, 2380, (2010).

[49] J. Habich, T. Zeiser, G. Hager, and G. Wellein, "Performance analysis and optimization strategies for a D3Q19 lattice Boltzmann kernel on NVIDIA GPUs using CUDA," Adv. Eng. Softw. 42, 266, (2011).

[50] C. Obrecht, F. Kuznik, B. Tourancheau, and J. J. Roux, "A new approach to the lattice Boltzmann method for graphics processing units," Comput. Math. Appl. 61, 3628, (2011).

[51] C. Obrecht, F. Kuznik, B. Tourancheau, and J. J. Roux, "Multi-GPU implementation of a hybrid thermal lattice Boltzmann solver using the TheLMA framework," Comput. Fluids. 80, 269, (2013).

[52] C. Obrecht, F. Kuznik, B. Tourancheau, and J. J. Roux, "Multi-GPU implementation of the lattice Boltzmann method," Comput. Math. Appl. 65, 252, (2013).

[53] C. Obrecht, F. Kuznik, B. Tourancheau, and J. J. Roux, "Scalable lattice Boltzmann solvers for CUDA GPU clusters," Comput. Fluids. 39, 259, (2013).

[54] H. W. Chang, P.Y. Hong, L.S. Lin and C.A. Lin, "Simulations of three- dimensional cavity flows with multi relaxation time lattice Boltzmann method and graphic processing units," Procedia Engineering. 61, 94, (2013)

[55] P. Y. Hong "Lattice Boltzmann model with multi-GPU implementation," Master's thesis, National Tsing Hua University, (2013)

[56] T. I. Gombosi, "Gas kinetic theory," Cambridge University Press, (1994).

[57] P.L. Bhatnagar, E. P. Gross, and M. Krook, "A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems," Phys. Rev. 94, 511, (1954).

[58] S. Harris, "An introduction to the theory of the Boltzmann equation," Holt, Rinehart and Winston, New York, (1971).
[59] T. I. Gombosi, "Gas kinetic theory," Cambridge University Press, (1994).

[60] X. He, and L. S. Luo, "Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation," Phys. Rev. E 56, 6811, (1997).

[61] H. Chen, S. Chen, and W. H. Matthaeus, "Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method," Phys. Rev. A. 45, 5339, (1992).

[62] L. S. Luo, "Theory of the lattice Boltzmann method: Lattice Boltzmann models for nonideal gases", Physical Review E 62, 4982, (2000).

[63] O. Filippova and D. H¨anel "Grid Refinement for Lattice-BGK Models" J. Comput.Phy 147, 219–228 (1998)

[64] D. Yu, R. Mei and W. Shyy "A multi-block lattice Boltzmann method for viscous fluid flows" Int. J. Numer. Meth. Fluids 2002; 39:99–120 (DOI: 10.1002/fld.280)

[65] D. Lagravaa , 0. Malaspinasb,a, J. Latta, B. Chopard "Advances in multi-domain lattice Boltzmann grid refinement"

[66] C. F. Ho, C. Chang, K. H. Lin, and C. A. Lin, "Consistent boundary conditions for 2D and 3D lattice Boltzmann models in three dimensions, " CMES 44, 137,(2009)

[67] Q. Zou and X. He "On pressure and velocity boundary conditions for the lattice Boltzmann BGK model"1997 American Institute of Physics. [S1070-6631(97)03406-5 ]

[68] C. Obrecht, F. Kuznik, B. Tourancheau, and J. J. Roux, "A new approach to the lattice Boltzmann method for graphics processing units," Comput. Math. Appl. 61, 3628, (2011).

[69] L. M. Huang, "Implementation of lattice Boltzmann method on multi-GPU cluster using two-dimensional decomposition," Master’s thesis, National Tsing Hua University, (2013)
[70] T. Y. Wang, "Simulation of fluid flow with Lattice Boltzmann method and local grid refinement on GPU," Master’s thesis, National Tsing Hua University, (2016)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *