帳號:guest(18.118.154.250)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):范書愷
作者(外文):Fan, Shu-Kai
論文名稱(中文):超音波及紊流流道對直接接觸薄膜蒸餾法產出效率之影響
論文名稱(外文):The Effect on Permeation Efficiency of Direct Contact Membrane Distillation with Ultrasound and Turbulent Channel Design
指導教授(中文):許文震
指導教授(外文):Sheu, Wen-Jenn
口試委員(中文):王訓忠
王啟川
口試委員(外文):Wong, Shwin-Chung
Wang, Chi-Chuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:104033514
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:103
中文關鍵詞:薄膜蒸餾法Z型流道超音波
外文關鍵詞:membrane distillationzigzag channelultrasound
相關次數:
  • 推薦推薦:0
  • 點閱點閱:1172
  • 評分評分:*****
  • 下載下載:9
  • 收藏收藏:0
目前用於改善薄膜蒸餾法極化現象造成之效率低下的方法,主要有紊流流道設計和施加超音波二種,但當前學術研究僅止於個別之物理機制和增益效果,故二種方法之結合是否有再增益的效果,實有研究之必要。
本研究使用直線流道與Z型流道,其進料端工作流體為純水,滲透端流速固定於0.06m/s,兩側溫差固定為15℃,以頻率為28kHz之法蘭式振盪板對流道施加超音波,調整超音波照射功率(0-108W)和進料端流雷諾數(Re=1110-5180) 進行測試,探討超音波結合非直線紊流流道設計對直接接觸薄膜蒸餾法之影響。結果顯示,未照射超音波時,二者之滲透通率皆隨雷諾數提高而增加,增幅於高雷諾數區趨緩,而Z型流道相對於直線流道可達7.6%之增益。施加超音波後,高雷諾數區對低功率超音波影響較不敏感,直線流道和Z型流道相對於其未施加超音波時之最大滲透增益分別為24.9% (Re=2035)及17.4% (Re=1110)。同時,推測低雷諾數之紊流內流場可能會抑制超音波部分效應;使用超音波增益薄膜蒸餾法時,其最大滲透通量有飽和值,此飽和值和流道種類無關而和雷諾數相依,並於接近臨界雷諾數時出現峰值。
There are two approaches frequently used to enhance the permeate mass flux in membrane distillation (MD). One is the special channel design to create turbulence earlier. The other is the irradiation of ultrasound. The focus of the recent study is about the physical mechanism and enhancement on MD for one of those, so it is necessary to explore what will be going on if we combine both of them in the system.
The effects of permeate flux enhancement for direct contact membrane distillation (DCMD) of pure water in the straight channel and zigzag channel with 28kHz ultrasound irradiation at a power in the range of 0-108W were tested. The Reynolds number of feed side varies in a range of 1110-5180, the velocity of permeate side and the temperature difference of both sides is fixed at 0.06m/s and 15℃ in the system. The results show that the permeation fluxes of both without ultrasound irradiation increase with increasing of Reynolds number but smaller rise under higher Reynolds number. The enhancement of zigzag channel in contrast to straight channel could reach 7.6%.
With ultrasound irradiation, the permeation fluxes of both are not sensitive to ultrasound under higher Reynolds number. The maximum enhancement in contrast to the flux without ultrasound is 24.9% for straight channel with Reynolds number of 2035 and 17.4% for zigzag channel with Reynolds number of 1110. The turbulent internal flows under lower Reynolds number may suppress the effects of ultrasound. Nevertheless, there is a maximum permeation flux for enhancing MD with ultrasound for any channel design which is only dependent on the Reynolds number. The peak of maximum flux appears if the Reynolds number is closed to the critical Reynolds number.
摘要 2
Abstract 3
致謝 5
符號說明 12
第一章 緒論 15
1-1 前言 15
1-2 薄膜蒸餾法之簡介 17
1-3 直接接觸薄膜蒸餾法之簡介 19
1-4 超音波簡介 21
1-5 文獻回顧 22
1-5-1 薄膜蒸餾法 22
1-5-2 超音波在水中的現象 22
1-5-3 超音波於薄膜蒸餾法中之應用 26
1-5-4 紊流流道設計 32
1-5-5 超音波對紊流邊界層之影響 40
第二章 理論分析 49
2-1 直接接觸薄膜蒸餾法(DCMD) 49
2-1-1 質量傳輸 49
2-1-2 熱量傳輸 50
2-1-3 溫度極化(Temperature Polarization) 52
2-2 超音波生成 54
2-2-1 超音波主機(Ultrasonic Generator) 54
2-2-2 壓電超音波換能器(Piezoelectric Transducers) 55
2-3 超音波在水中之現象 57
2-3-1 超聲空化現象(Ultrasonic Cavitation) 57
2-3-2 音波流動效應(Acoustic Streaming) 61
2-4 超音波對直接接觸薄膜蒸餾法之影響 63
第三章 研究方法 65
3-1 研究目標 65
3-2 實驗系統示意圖與設備 66
3-3 實驗變因 75
3-3-1 控制變因 75
3-3-2 操縱變因 75
3-3-3 應變變因 77
3-4 實驗步驟 78
第四章 結果與討論 81
4-1 直線流道 83
4-2 Z型流道 87
第五章 結論與未來展望 92
5-1 結論 92
5-2 未來展望 94
參考文獻 95
附錄 A 102
真空薄膜蒸餾法(Vacuum Membrane Distillation, VMD) 102
氣體掃掠薄膜蒸餾法(Sweeping Gap Membrane Distillation , SGMD)102
空氣間隙薄膜蒸餾法(Air Gap Membrane Distillation, AGMD) 103
【1】M. Khayet and T. Matsuura, Membrane Distillation Principles and Applications, Elsevier, 2011.
【2】M. S. El-Bourawi, Z. Ding and R. Maa, M. Khayet, “A framework for better understanding membrane distillation separation process,” J. Membr. Sci. 285, pp. 4-29, 2006.
【3】M. E. Findley, “Vaporization through porous membranes,” Ind. Eng. Chem. Process Des. Dev. 6 (2), pp. 226-230, 1967.
【4】R. W. Schofield, A.G. Fane and C.J.D. Fell, “Heat and mass transfer in membrane distillation,” J. Membr. Sci. 33, pp. 299-313, 1987.
【5】S. J. Lighthill, “Acoustic streaming,” J. Sound Vib. 61, pp. 391-418, 1978.
【6】J. R. Blake and D. C. Gibson, “Growth and collapse of a vapour cavity near a free surface,” J. Fluid Mech. 111, pp. 123-140, 1981.
【7】J. R. Blake, B. B. Taib and G. Doherty, “Transient cavities near boundaries. Part 1. Rigid boundary,” J. Fluid Mech. 170, pp. 479-497, 1986.
【8】J. R. Blake, B. B. Taib and G. Doherty, “Transient cavities near boundaries. Part 2. Free surface,” J. Fluid Mech. 181, pp. 197-212, 1987.
【9】K. S. Suslick, “The chemical effects of ultrasound,” Science 247, pp. 1439-1445, 1990.
【10】W. B. McNamara, Y. T. Didenko and K. S. Suslick, “Sonoluminescence temperatures during multi-bubble cavitation,” Nature 401, pp. 772-775, 1999.
【11】T. Kodama and Y. Tomita, “Cavitation bubble behavior and bubble–shock wave interaction near a gelatin surface as a study of in vivo bubble dynamics,” Appl. Phys. B 70, pp. 139-149, 2000.
【12】K. Yasui, “Influence of ultrasonic frequency on multibubble sonoluminescence,” J. Acoust. Soc. Am. 112 (4), pp. 1405-1413, 2002.
【13】P. Tho, R. Manasseh and A. Ooi, “Cavitation microstreaming patterns in single and multiple bubble systems,” J. Fluid Mech. 576, pp. 191-233, 2007.
【14】M. Legay, N. Gondrexon, S. L. Person, P. Boldo and A. Bontemps, “Enhancement of Heat Transfer by Ultrasound: Review and Recent Advances,” Int. J. Chem. Eng. 2011, pp. 1-17, 2011.
【15】H. Li, E. Ohdaira and M. Ide, “Effect of Ultrasonic Irradiation on Permeability of Dialysis Membrane,” Jpn. J. Appl. Phys. 35, pp. 32-55, 1996.
【16】T. Kobayashi, X. Chai and N. Fujii, “Ultrasound enhanced cross-flow membrane filtration,” Sep. Purif. Technol. 17 (1), pp. 31-40, 1999.
【17】C. Zhu and G. Liu, “Modeling of ultrasonic enhancement on membrane distillation,” J. Membr. Sci. 176 (1), pp. 31-41, 2000.
【18】I. Masselin, X. Chasseray, L. Durand-Bourlier, J.-M. Lainé, P.-Y. Syzaret and D. Lemordant, “Effect of sonication on polymeric membranes,” J. Membr. Sci. 181 (2), pp. 213-220, 2001.
【19】S. Muthukumaran, K. Yang, A. Seuren, S. Kentish, M. Ashokkumar, G.W. Stevens and F. Grieser, “The use of ultrasonic cleaning for ultrafiltration membranes in the dairy industry,” Sep. Purif. Technol. 39, pp. 99-107, 2004.
【20】H. M. Kyllönen, P. Pirkonen and M. Nyström, “Membrane filtration enhanced by ultrasound: a review,” Desalination 181 (1-3), pp. 319-335, 2005.
【21】A. Boubakri, A. Hafiane and S. A. T. Bouguecha, “Direct contact membrane distillation: Capability to desalt raw water,” Arabian J. Chem. 10, pp. S3475-S3481, 2014.
【22】D. Hou, G. Dai, H. Fan, H. Huang and J. Wang, “An ultrasonic assisted direct contact membrane distillation hybrid process for desalination,” J. Membr. Sci. 476, pp. 59-67, 2014.
【23】L. Martinez-Diez, M.I. Vazquez-Gonzalez and F.J. Florido-Diaz, “Study of membrane distillation using channel spacers,” J. Membr. Sci. 144, pp. 45-56, 1998.
【24】J. Phattaranawik, R. Jiraratananon, A.G. Fane and C. Halim, “Mass flux enhancement using spacer filled channels in direct contact membrane distillation,” J. Membr. Sci. 187, pp.193-201, 2001.
【25】J. Phattaranawik, R. Jiraratananon and A.G. Fane, “Effects of net-type spacers on heat and mass transfer in direct contact membrane distillation and comparison with ultrafiltration studies,” J. Membr. Sci. 217, pp. 193-206, 2003.
【26】L. Martínez and J.M. Rodríguez-Maroto, “Characterization of membrane distillation modules and analysis of mass flux enhancement by channel spacers,” J. Membr. Sci.274, pp. 123-137, 2006.
【27】L. Martínez and J.M. Rodríguez-Maroto, “Effects of membrane and module design improvements on flux in direct contact membrane distillation,” Desalination 205, pp. 97-103, 2007.
【28】H. R. Millward, B. J. Bellhouse, I. J. Sobey and R. W. H. Lewis, “Enhancement of plasma filtration using the concept of the vortex wave,” J. Membr. Sci. 100, pp. 121-129, 1995.
【29】B. B. Gupta, J.A. Howell, D. Wu and R.W. Field, “A helical baffle for cross-flow microfiltration,” J. Membr. Sci 99, pp. 31-42, 1995.
【30】Siamak Najarian and B.J. Bellhouse, “Enhanced microfiltration of bovine blood using a tubular membrane with a screw-threaded insert and oscillatory flow,” J. Membr. Sci 112, pp. 249-261, 1996.
【31】X. ZHEN, S. YU, B. WANG and H. ZHENG, “Flux enhancement during ultrafiltration of produced water using turbulence promoter,” Journal of Environmental Sciences 18 (6), pp. 1077-1081, 2006.
【32】J. Schwinge, D. E. Wiley, A. G. Fane and R. Guenther, “Characterization of a zigzag spacer for ultrafiltration,” J. Membr. Sci 172, pp. 19-31, 2000.
【33】J. Schwinge, D. E. Wiley and A. G. Fane, “Novel spacer design improves observed flux”, J. Membr. Sci 229, pp. 53-61, 2004.
【34】H. Kato, T. Iwashina, M. Miyanaga and H. Yamaguchi, “Effect of Microbubbles on the Structure of Turbulence in a Turbulent Boundary Layer,” J. Mar. Sci. Techanol. 4, pp. 155-162,1999.
【35】S. H. Park, I. Lee and H. J. Sung, “Effect of local forcing on a turbulent boundary layer,” Experiment in Fluid 31, pp. 384-393, 2001.
【36】G. H. Rhee and H. J. Sung, “Numerical prediction of locally forced turbulent boundary layer,” J. Heat and Fluid Flow 22, pp. 624-632, 2001.
【37】J. Xu, M. R. Maxey and G. E. Karniadakis, “Numerical simulation of turbulent drag reduction using micro-bubbles,” J. Fluid Mech. 468, pp. 271-281, 2002.
【38】S. Nomura, K. Murakami and M. Kawada, “Effects of Turbulence by Ultrasonic Vibration on Fluid Flow in a Rectangular Channel,” Jpn. J. Appl. Phys. 41, pp. 6601-6605, 2002.
【39】Y. S. Park, S. H. Park and H. J. Sung, “Measurement of local forcing on a turbulent boundary layer using PIV,” Experiments in Fluids 34, pp. 697-707, 2003.
【40】A. Ferrante and S. Elghobashi, “On the physical mechanisms of drag reduction in a spatially developing turbulent boundary layer laden with microbubbles,” J. Fluid Mech. 503, pp. 345-355, 2004.
【41】J. Lu, A. Fernández and G. Tryggvason, “The Effect of Bubbles on the Wall Drag in a Turbulent Channel Flow,” Phys. Fluids 17, pp. 095102, 2005.
【42】Y. S. Park and H. J. Sung, “Influence of Local Ultrasonic Forcing on A Turbulent Boundary Layer.,” Experiments in Fluids 39, pp. 966-976, 2005.
【43】林辰翰, “直接接觸薄膜蒸餾法之產出效率研究,” 碩士論文, 動力機械工程學系, 清華大學, 2010.
【44】M. Qtaishat, T. Matsuura, B. Kruczek and M. Khayet, “Heat and mass transfer analysis in direct contact membrane distillation,” Desalination 219, pp. 272-292, 2008.
【45】J. T. Bushberg, J. A. Seibert, E. M. Leidholdt Jr. and J. M. Boone The Essential Physics of Medical Imaging, LWW, 3 edition, 2011.
【46】P. Fabijanski and R. Lagoda, Modeling and Identification of Parameters the Piezoelectric Transducers in Ultrasonic Systems, Advances in Ceramics – Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment, InTech., pp. 155-176, 2011.
【47】S. Gade, Sound Intensity (Part I. Theory), Brüel & Kjær Tech. Rev. 3, pp. 3-39, 1982.
【48】K. Yasui, T. Tuziuti, M. Sivakumar and Y. Iida, “Sonoluminiscence,” Appl. Spectrosc. Rev. 39 (3), pp. 399-436, 2004.
【49】Y. Tomita and A. Shima, “High-Speed Photographic Observations of Laser-Induced Cavitation Bubbles in Water,” Acta Acust. united Ac. 71 (3), pp. 161-171, 1990.
【50】H. Mitome, “The mechanism of generation of acoustic streaming,” Electron. Commun. Jpn. 3 Fundam. Electron. Sci. 81 (10), pp. 1-8, 1998.
【51】劉菊蓮, “直接接觸薄膜蒸餾法之熱質傳研究,” 碩士論文, 動力機械工程學系, 清華大學, 2009.
【52】黃竫為, “超音波對直接接觸薄膜蒸餾法之產出效率影響,” 碩士論文, 動力機械工程學系, 清華大學, 2015.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *