帳號:guest(18.116.40.188)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳鋒儒
作者(外文):Chen, Fong-Ru
論文名稱(中文):以實驗方法探討微流道交錯式薄膜氣泡腔體誘導聲流之流場與熱傳增益
論文名稱(外文):Experiment study on flow field and heat transfer analysis in microchannel flow using bubble-induced acoustic streaming with staggered cavities and membrane
指導教授(中文):劉通敏
黃智永
指導教授(外文):Liou, Tong-Miin
Huang, Chih-Yung
口試委員(中文):陳玉彬
田維欣
口試委員(外文):Chen, Yu-Bin
Tien, Wei-Hsin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:104033506
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:126
中文關鍵詞:氣泡誘導聲流薄膜微粒子影像測速法溫度螢光感測塗料流場可視化熱傳增益
外文關鍵詞:bubble-induced acoustic streamingmembraneMicro Particle Image VelocimetryTemperature-Sensitive Paintflow visualizationheat transfer enhancement
相關次數:
  • 推薦推薦:0
  • 點閱點閱:196
  • 評分評分:*****
  • 下載下載:22
  • 收藏收藏:0
本研究旨在探討氣泡誘導聲流效應用在微流道中的熱傳分析。實驗使用以PDMS為材質製作的矩形微流道,在微流道的側壁面設計交錯式的腔體放置氣泡,並在腔體出口安置薄膜幫助震動與幫助維持氣泡形狀。實驗時利用壓電片的開啟來驅動薄膜氣泡誘導聲流效應,新設計的薄膜可抑制氣泡於壓電片開啟以及加熱時所產生的膨脹。接著利用流場可視化技術搭配微粒子影像測速法與溫度螢光感測塗料之量測技術對微流道進行流場與熱傳能力的分析。實驗量測包括單邊單薄膜氣泡腔體及交錯式多組薄膜氣泡腔體,分別去量測主流場雷諾數2、4、6、8下薄膜聲流效應速度場的影響強度及範圍。實驗結果發現單邊單薄膜氣泡腔體的聲流效應會隨著主流場雷諾數的增加而被抑制,在雷諾數2與4的條件下聲流效應在x方向(主流方向)的影響範圍約206 µm,y方向(橫向)約187.5 µm;而雷諾數6於x方向的影響範圍約107 µm,y方向約75 µm,雷諾數8則無明顯的影響範圍。交錯式多組薄膜氣泡腔體流道於四個雷諾數下皆可影響至流道的中心(y/W=0),四個雷諾數中主流為雷諾數4時的聲流效應表現最佳,可觀察到薄膜氣泡腔體間的聲流效應有延續放大的現象。
本研究接著探討交錯式多組薄膜氣泡腔體流道在聲流效應開啟且流到底部給予定熱通量0.2 W/mm2條件下,比較雷諾數2、4、6、8焓值增益,結果發現雷諾數4聲流效應的焓值增益最高,約27.04%。最後針對雷諾數4的條件下針對流道內區域熱傳增益進行分析,結果發現其區域熱傳增益隨著薄膜氣泡腔體會逐漸提升,與實驗觀察的速度場變化一致。流道中透過多組薄膜氣泡腔體可將熱傳效果進行疊加放大,到最後一個薄膜氣泡腔體於流道中心位置(y/W=0)可達最高的熱傳增益約84.3%。
This study aims to investigate the bubble-induced acoustic streaming effect on heat transfer enhancement in microchannel flow with cavities and membrane design. Rectangular microchannel devices with single cavity with membrane and multiple staggered cavities with membrane were fabricated with PDMS as the material by soft lithography. The cavities with membrane were positioned at the sidewall of the microchannel, and the bubble-induced acoustic streaming was driven by a piezoelectric powered by a power supply. The design of the membrane at the exit of cavity is to suppress the expansion of the bubble during the exciation by piezoelectric and heating. The flow field and heat transfer analysis of the microchannel were analyzed by using the flow visualization (FV) technique, Micro Particle Image Velocimetry (µ-PIV) and Temperature-Sensitive Paint (TSP) technique. The magnitude and affected area of bubble-induced acoustic streaming velocity flow field under Reynolds number 2,4,6,8 are measured. It is found that the effect of bubble-induced acoustic streaming is suppressed with the increase of Reynolds number from the experimental result of single cavity with membrane. The effect range of bubble-induced acoustic streaming in x direction is about 206 µm and approximately 187.5 µm in y direction at the Reynolds number conditions of 2 and 4. The effect range of bubble-induced acoustic streaming in x direction reduces to 107 µm and about 75 µm in y direction at the Reynolds number condition of 6. The bubble-induced acoustic streaming is not obvious at Reynolds number of 8. The velocity profiles of multiple staggered cavities with membrane have been examined at the center of microchannel(y/W=0) at Reynolds number 2,4,6,8 with bubble-induced acoustic streaming. The bubble-induced acoustic streaming at Reynolds number of 4 can provide most effective disturbance in the flow field, and it can be observed that the effect of bubble-induced acoustic streaming is continued and increased while the flow passing cavities.
The enthalpy change of flow through the microchannel with mulitiple staggered cavities with membrane have also been meaured at Reynolds number conditions of 2,4,6,8 with constant heat flux of 0.2 W/mm2 boudnary condition at the bottom of microchannel. The highest enthalpy change between microchannel inlet and exit is at Reynolds number of 4, which can reach about 27.04%. The local Nusselt (Nu) number variation has been obtained by TSP technique and the local Nu number would gradually increase while the flow passing the cavities, the same as obsereved in the velocity field. Heat transfer enhancement would reach to about 84.3% at center of microchannel (y/W=0) after the flow moving to the location of last cavity.
目錄
摘要 I
Abstract III
誌謝 V
目錄 VII
圖目錄 XI
表目錄 XVII
符號說明 XVIII
一般符號------------------------------------------------------------------------------ XVIII
無因次參數-----------------------------------------------------------------------------XIX
希臘符號---------------------------------------------------------------------------------XX
下標符號---------------------------------------------------------------------------------XX
第一章、 緒論 1
1.1 研究動機 1
1.2 文獻回顧 3
1.2.1 微流道熱傳現象研究 3
1.2.2 Micro-PIV 的發展 8
1.2.3 TSP螢光溫度感測塗料發展 11
1.2.4 制動器共振誘導聲流效應回顧 12
1.3 研究目的 20
1.4 論文架構 22
第二章、 實驗原理 23
2.1 Micro-PIV 量測原理 23
2.2 TSP螢光溫度感測塗料 25
2.3 微流道熱傳分析 28
2.4 氣泡理論共振頻率 30
第三章、 實驗架設 32
3.1 微流道製作 32
3.2 微型加熱器製作 36
3.3 μ-PIV 系統介紹 38
3.3.1 μ-PIV實驗儀器架設 38
3.3.2 流量控制與訊號產生器時序設定 39
3.4 流場可視化系統 41
3.5 溫度量測系統 43
3.6 調配工作流體及溫度螢光感測塗料 46
3.7 TSP校正曲線 50
3.8 壓電片振動頻率及振幅 53
3.9 熱損計算 54
3.10 影像處理方法 56
3.11 誤差分析 58
第四章、 微流道速度與溫度量測之驗證 64
4.1 直管速度場驗證 64
4.2 直管溫度場驗證 66
第五章、 單邊單薄膜氣泡腔體誘導聲流效應結果 68
5.1 薄膜腔體抑制氣泡膨脹 68
5.2 單邊單薄膜氣泡腔體誘導聲流之速度場與溫度場 70
5.2.1 薄膜氣泡誘導聲流FV流場可視化與PIV速度量測結果 70
5.2.2 薄膜氣泡誘導聲流U、V速度向量分析 74
5.2.3 確認壓電片是否輸入熱量 81
5.2.4 薄膜氣泡誘導聲流TSP液温結果 82
第六章、 交錯式薄膜氣泡腔體誘導聲流效應流場與熱傳結果 88
6.1 交錯式薄膜氣泡腔體流道設計 88
6.2 交錯式薄膜氣泡誘導聲流之速度場 90
6.2.1 薄膜氣泡誘導聲流FV流場可視化與PIV速度量測結果 90
6.2.2 薄膜氣泡誘導聲流U、V速度向量分析 95
6.3 交錯式薄膜氣泡誘導聲流之熱傳結果與分析 103
6.4 交錯式薄膜氣泡誘導聲流之流場與熱傳效益相關性 118
第七章、 結論與未來工作 121
7.1 結論 121
7.2 未來建議工作 123
參考文獻 124
[1] R. K. Shah, A. L. London." Laminar Flow Forced Convection in Ducts." New York : Academic Press, 1978.
[2] R. K. Shah, M. S. Bhatti. Handbook of Single-Phase Convective Heat Transfer. New York : Wiley, 1987.
[3] G. L. Morini, "Single-phase convective heat transfer in microchannels: a review of experimental results," International Journal of Thermal Sciences, vol. 43, pp. 631-651, 7// 2004.
[4] P. Gao, "Scale effect on hydrodynamics and heat transfer in two-dimensional mini and microchannels,". International Journal of Thermal Sciences, vol. 41, pp.1017-1027,2001
[5] M. K. Moharana, G. Agarwal, and S. Khandekar, "Axial conduction in single-phasw simutaneously developing flow in a rectangular mini-channel array,"International Journal of Thermal Sciences, vol. 50, pp. 1001-1012, 2011.
[6] A. R. Betz and D. Attinger, "Can segmented flow enhance heat transfer in microchannel heat sinks?," International Journal of Heat and Mass Transfer, vol. 53, pp. 3683-3691, 9// 2010.
[7] 黃柏翰, "溫度螢光感測技術與粒子影像速度量測技術應用於兩相區段流熱傳分析," 清華大學動力機械工程學系學位論文, pp. 121-132, 2013.
[8] R. J. Adrian, "Particle-imaging techniques for experimental fluid mechanics," Annual review of fluid mechanics, vol. 23, pp. 261-304, 1991.
[9] C. D. Meinhart, A. K. Prasad, R. J. Adrian. "A Parallel Digital Processor System for Particle Image Velocimetry". Meas. Sci. Technol., Vol. vol,4, pp, 619-626,1993.
[10] J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. Beebe, and R. J. Adrian, "A particle image velocimetry system for microfluidics," Experiments in fluids, vol. 25, pp. 316-319, 1998.
[11] C. D. Meinhart, S. T. Wereley, and J. G. Santiago, "PIV measurements of a microchannel flow," Experiments in fluids, vol. 27, pp. 414-419, 1999.
[12] 林智仁, "微粒子影像測速法及溫度螢光感測技術應用於微流體90度彎管之流場與熱傳分析," 清華大學動力機械工程學系學位論文, pp. 83-95, 2014.
[13] T. Liu, Pressure‐and Temperature‐Sensitive Paints: Wiley Online Library, 2004.
[14] J. J. Lee, J. C. Cutton, and A. M. Jacobi, "Application of temperature-sensitive paint for surface temperature measurement in heat transfer enhancement applications," Jourmal of mechanical science and technology, vol. 21, pp.1253-1262,2007.
[15] C. Y. Huang, C. A. Li, H. Y. Wang, and T. M. Liou, "The application of temperature-sensitive paints for surface and fluid temperature measurements in both thermal developing and fully developed regions of a microchannel," Journal of Micromechanics and Microengineering, vol. 23, pp. 037001, 2013.
[16] M. E. Steinke and S. G. Kandlikar, "Single-phase heat transfer enhancement techniques in microchannel and minichannel flows," in ASME 2004 2nd International Conference on Microchannels and Minichannels, pp. 141-148, 2004.
[17] R. Fang, W. Jiang, J. Khan, "Experimental Study on the Effect of Synthetic Jet on low Boiling Instability in a Microchannel," proceedings of the ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels, 2011.
[18] P. H. Huang, "A Reliable and Programmable Acoustofluidic Pump Powered by Oscillating Sharp-Edge Structures," Lab on a Chip, vol. 14 pp. 4319-4323, 2014.
[19] R. H. Liu, J. Yang, M. Z. Pindera, M. Athavale, and P. Grodzinski, "Bubble-induced acoustic micromixing," Lab on a Chip, vol. 2, pp. 151-157, 2002.
[20] D. Ahmed, X. Mao, B. K. Juluri, and T. J. Huang, "A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles," Microfluidics and nanofluidics, vol. 7, pp. 727-731, 2009.
[21] B. K. Juluri and T. J. Huang, "A millisecond micromixer via single-bubble-based acoustic streaming," Lab on a Chip, vol. 9, pp. 2738-2741, 2009.
[22] D. Ahmed, "Acoustofluidic Chemical Waveform Generator and Switch," Analytical Chemistry, vol. 86, pp.11803-11810,2014.
[23] P. Tho, R. Manasseh, and A. Ooi, "Cavitation microstreaming patterns in single and multiple bubble systems," Journal of fluid mechanics, vol. 576, pp. 191-233, 2007.
[24] 鄭意憲, "以微粒子影像測速法與溫度螢光感測塗料量測技術探討氣泡誘導聲流之流場及熱傳分析," 清華大學動力機械工程學系學位論文, pp. 75-103, 2016.
[25] C. D. Meinhart, S. T. Wereley, and J. G. Santiago, "A PIV Algorithm for Estimating Time-Averaged Velocity Fields," Journal of Fluids Engineering, vol. 122, pp. 285-289, 2000.
[26] T. Liu and J. P. Sullivan, "Pressure and Temperature Sensitive Paints," Springer,2005.

[27] M. Minnaert, "XVI. On musical air-bubbles and the sounds of running water," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 16, pp. 235-248, 1933.
[28] T. Leighton, The acoustic bubble: Academic press, 2012.
[29] S. Wereley and L. Gui, "A correlation-based central difference image correction(CDIC) method and application in a four-roll mill flow PIV measurement," Experiment in Fluids, vol. 34, pp. 42-51, 2003.
[30] M. Raffel, C. Willert, S. Wereley, and J. Kompenhans, Particle image velocimetry: Springer, 2007.
[31] C. Y Huang, C. M. Lai, and J. S. Li, "Applications of pixel-by-pixel calibration method in microscale measurements with pressure-cencitive paint," Microelectromechanical Systems, Journal of, vol. 21, pp. 1090-1097, 2012.
[32] R. Lima, S. Wada, K. Tsubota, and T. Yamaguchi, "Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel," Measurement Science & Technology, vol. 17, pp. 797-808, Apr 2006.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *