|
[1] U. Frisch, B. Hasslacher, and Y. Pomeau, “Lattice-gas automata for the Navier- Stokes equation,” Phys. Rev. Lett. 56, 1505, (1986). [2] S. Wolfram, “Cellular automaton fluids 1: Basic theory,” J. Stat. Phys. 45, 471, (1986). [3] F. J. Higuera, S. Sussi, and R. Benzi, “3-dimensional flows in complex geometries with the lattice Boltzmann method,” Europhys. Lett. 9, 345, (1989). [4] F. J. Higuera, and J. Jem´enez, “Boltzmann approach to lattice gas simulations,” Europhys. Lett. 9, 663, (1989). [5] P. L. Bhatnagar, E. P. Gross, and M. Grook, “A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems,” Phys. Rev. E 94, 511, (1954). [6] S. Harris, “An introduction to the throry of the Boltzmann equation,” Holt, Rinehart and Winston, New York, (1971). [7] U. Frisch, D. d’Humi`eres, B. Hasslacher, P. Lallemand, Y. Pomeau, and J. P. Rivet, “Lattice gas hydrodynamics in two and three dimensions,” Complex Syst. 1, 649, (1987). [8] D. O. Martinez, W. H. Matthaeus, S. Chen, and D. C. Montgomery, “Comparison of spectral method and lattice Boltzmann simulations of two- dimensional hydrodynamics,” Phys. Fluids. 6, 1285, (1994). [9] S. Osher and R. P. Fedkiw, “Level set method: An overview and some recent results,” J. Comput. Phys. 169, 463, (2001). [10] R. Scardovelli and S. Zaleski, “Direct numerical simulation of free-surface and interfical flow,” Annu.Rev.Fluid Mech. 31, 567, (1999). [11] T. Y. Hou, J. S. Lowengrub, and M. J. Shelley, “Boundary integral methods for multicomponent fluids and multiphase materials,” J. Comput.Phys. 169, 302, (2001). [12] P. Y. Hong, L. M. Huang, L. S. Lin, and C.A. Lin, “Scalable multi-relaxation- time lattice Boltzmann simulations on multi-GPU cluster,” Computers & Fluids. 110, 1-8, (2015). [13] X. Shan and H. Chen, “Lattice Boltzmann model for simulating flows with multiple phases and components,” Phys. Rev. E. 47, 1815-1819, (1993). [14] X. Shan and H. Chen, “Simulation of Nonideal Gases and Liquid-GasPhase Transitions by the Lattice Boltzmann Equation,” Phys. Rev. E. 49, 2941-2948, (1994). [15] X. Shan, and G. D. Doolen, “Multicomponent Lattice-Boltzmann Model With Interparticle Interaction,” J. Stat. Phys. 52, 379-393, (1995). [16] M. R. Swift, W. R. Osborn, and J. M. Yeomans “Lattice Boltzmann simulation of nonideal fluids,” Phys. Rev. Lett. 75(5), 830-833, (1995). [17] M. R. Swift, W. R. Osborn, and J. M. Yeomans “Lattice Boltzmann simulations of liquid-gas and bunary-fluid systems,” Phys. Rev. E,54, 5041-5052, (1996). [18] T. Inamuro, T. Ogata, S. Tajima, and N. Konishi, “A lattice Boltzmann method for incompressible two-phase flows with large density differences,” J. Comput. Phys. 198, 628, (2004). [19] T. Lee and C. L. Lin, “A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio,” J. Comput. 206, 16-47, (2005) [20] T. Lee and P. F. Fischer, “Eliminating parasitic currents in the lattice Boltzmann equation method for nonideal gases,” Phys. Rev.E. 74, 046709, (2006). [21] T. Lee and L. Liu, “Lattice Boltzmann simulations of micron-scale drop impact on dry surfaces,” J. Comput. Phys. 229, 8045-8063, (2010). [22] D. Bhaga and M. E. Weber, “In-line interaction of a pair of bubbles in a viscous liquid,” Chem. Eng. Sci. 35, 2467-2474, (1980). [23] D. Bhaga and M. E. Weber, “Bubbles in viscous liquids: shapes, wakes and velocities,” J. Fluid Mech. 105, 61-85, (1981). [24] R. Krishna, M.I. Urseanu, J. M. van Baten, and J. Ellenberger, “Rise velocity of a swarm of large gas bubbles in liquids,” Chem. Eng. Sci. 54, 171-183, (1999). [25] N. Takada, M. Misawa, A. Tomiyama, and S. Fujiwara, “Numerical simulation of two- and three-dimensional two-phase fluid motion by lattice Boltzmann method,” Comput. Phys. Commun. 129, 233-246, (2000). [26] M. Cheng, J. Hua, and J. Lou, “Simulation of bubble–bubble interaction using a lattice Boltzmann method,” Comput. Fluids. 39, 260-270, (2010). [27] H. W. Zheng, C. Shu, and Y. T. Chew, “Lattice Boltzmann interface capturing method for incompressible flows,” Phys. Rev. E 72, 056705, (2005). [28] L. Amaya-Bower, T. Lee, “Single bubble rising dynamics for moderate Reynolds number using Lattice Boltzmann Method,” Comput. Fluids. 39, 1191-1207, (2010). [29] J. Bolz, I. Farmer, E. Grinspun, and P. Schro¨der, “Sparse matrix solvers on the GPU: Conjugate gradients and multigrid,” ACM Trans. Graph. (SIGGRAPH) 22, 917, (2003). [30] F. A. Kuo, M. R. Smith, C. W. Hsieh, C. Y. Chou, and J. S. Wu, “GPU acceleration for general conservation equations and its application to several engineering problems,” Comput. Fluids. 45, 147, (2011). [31] J. T¨olke, and M. Krafczyk, “TeraFLOP computing on a desktop PC with GPUs for 3D CFD,” Comput. Fluid D. 22, 443-456, (2008). [32] C. Obrecht, F. Kuznik, B. Tourancheau, and J. J. Roux, “A new approach to the lattice Boltzmann method for graphics processing units,” Comput. Math. Appl. 61, 3628, (2011). [33] X. Wang, T. Aoki, “Multi-GPU performance of incompressible flow computation by lattice Boltzmann method on GPU cluster,” Parallel. Computing. 37, 521, (2011). [34] J. Myre, S. D. C. Walsh, D. Lilja and M. O. Saar, “Performance analysis of single-phase, multiphase, and multicomponent lattice-Boltzmann fluid flow simulations on GPU clusters,” Concurrency Comput.: Pract. and Exper. 23, 332-350, (2010). [35] X. Li, Y. Zhang, X. Wang, Wei Ge , “Performance analysis of single-phase, multiphase, and multicomponent lattice-Boltzmann fluid flow simulations on GPU clusters,” Concurrency Comput.: Pract. and Exper. 23, 332-350, (2010). [36] T. C. Huang and C. A. Lin, “Lattice Boltzmann Simulations of Two-phase Flow at High Density Ratio on Multi-GPU CLuster,” National Tsing Hua University, Department of Power Mechanical Engineering, (2016). [37] Tamas I. Gombosi, “Gas kinetic theorym,” Cambridge University Press, (1994). [38] X. He, and L. S. Luo, “Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation,” Phys. Rev. E 56, 6811-6817, (1997). [39] D. A. Wolf-Gladrow, “Lattice-gas cellular automata and lattice Boltzmann models - an introduction,” Springer, Lecture Notes in Mathematics, p.159, (2000). [40] T. Lee, “Effects of incompressibility on the elimination of parasitic currents in the lattice Boltzmann equation method for binary fluids ,” Comput. Math. Appl. 58, 987-994, (2009). [41] L. Amaya-Bower, T. Lee, “Numerical simulation of single bubble rising in vertical and inclined square channel using lattice Boltzmann method,” Chem. Eng. Sci. 66, 935-952, (2011). [42] H. W. Chang, P .Y. Hong, L. S. Lin and C. A. Lin, “Simulations of flow instability in three dimensional deep cavities with multi relaxation time lattice Boltzmann method on graphic processing units,” Comput. & Fluids. 88, 866- 871, (2013). [43] R. Clift, J. R. Grace and M. E. Weber, “Bubbles, Drops, and Particles,” New York: Academic Press, (1978).
|