帳號:guest(3.135.186.122)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張健益
作者(外文):Chang, Chien-Yi
論文名稱(中文):使用多圖形顯示卡叢集與晶格波茲曼法模擬氣泡上升動力學問題
論文名稱(外文):Lattice Boltzmann Simulations of Bubbles Rising Dynamics on Multi-GPU Cluster
指導教授(中文):林昭安
指導教授(外文):Lin, Chao-An
口試委員(中文):陳慶耀
林洸銓
口試委員(外文):Chen, Ching-Yao
Lin, Kuang-C
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:104033505
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:51
中文關鍵詞:晶格波茲曼法多相流模型高密度差假性速度氣泡上升圖形顯示卡
外文關鍵詞:lattice Boltzmann methodmulti-phaselarge density ratiospurious velocityBubble risingGPUCUDA
相關次數:
  • 推薦推薦:0
  • 點閱點閱:770
  • 評分評分:*****
  • 下載下載:20
  • 收藏收藏:0
在本研究中使用Lee所提出的晶格波茲曼模型進行三維的多相流模擬計算,並在多張圖形顯示卡叢集上運行以獲得高效率的結果。其中驗證的例子有消除氣泡周圍由於數值誤差而產生的假性速度。在單球上升的模擬中,討論在不同無因次參數bond number和Morton number下,對於氣泡上升過程的變形過程以及終端速度的影響,不論是模擬的變形過程以及雷諾數都與實驗結果相符合。而雙球上升的模擬中,無論初始氣泡是在同軸或非同軸的狀態,都可以觀察到下方氣泡由於上方氣泡產生的尾流而加速上升的現象。經由不同氣泡大小的設定,也能發現體積大的氣泡受到流場的影響也較大。此外,將二維平行切割應用在多圖形顯示卡叢集,效能測試的結果顯示即使使用多張圖形顯示卡計算,依舊能維持高平行效率。
In this thesis, a three-dimensional two-phase lattice Boltzmann model [28] is adopted on multi graphic processing unit (GPU) cluster. Such a binary system at high density ratio is carried out with high performance of computation. In the study, The spurious velocity caused by the force imbalance near the two-phase interface can be successfully suppressed in the simulation. A single bubble rising in a rectangular domain is discussed with different regimes of Bond number (Bo) and Morton number (Mo). The terminal Reynolds number (Re) and the deformed shape are consistent with both experimental results [23] and simulation results obtained by Lee et al. [28]. The phenomenon of the trailing bubble catching up the leading bubble is observed. Further, an efficient multi-GPU cluster implementation with two
dimensional decomposition is examined and the program maintains good scalability even in the case with high GPU number.
1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Lattice Boltzmann method . . . . . . . . . . . . . . . . . 1
1.1.2 Multiphase fluid systems . . . . . . . . . . . . . . . . . 2
1.1.3 Graphics processing unit . . . . . . . . . . . . . . . . . 2
1.2 Literature survey . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Lattice Boltzmann multiphase model . . . . . . . . . . . . 3
1.2.2 Bubble dynamics. . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 GPU implementation . . . . . . . . . . . . . . . . . . . . 6
1.3 Objective and motivation . . . . . . . . . . . . . . . . . . 7
2 Theory and governing equations 8
2.1 The Boltzmann equation . . . . . . . . . . . . . . . . . . . 8
2.2 The BGK approximation. . . . . . . . . . . . . . . . . . . . 9
2.3 The low-Mach-number approximation . . . . . . . . . . . . . 11
2.4 Discretization of the Boltzmann equation. . . . . . . . . . 12
2.4.1 Discretization of phase space . . . . . . . . . . . . . . 12
2.4.2 Dicretization of time . . . . . . . . . . . . . . . . . . 13
2.5 The free-energy model . . . . . . . . . . . . . . . . . . . 14
2.6 Lattice Boltzmann model for multiphase flow . . . . . . . . 15
2.6.1 The governing equations . . . . . . . . . . . . . . . . . 15
2.6.2 Discrete Boltzmann equation . . . . . . . . . . . . . . . 15
2.6.3 Interface capturing equation. . . . . . . . . . . . . . . 17
3 Numerical algorithm 20
3.1 Simulation procedure. . . . . . . . . . . . . . . . . . . . 20
3.2 Gradient treatments . . . . . . . . . . . . . . . . . . . . 21
3.3 Boundary condition. . . . . . . . . . . . . . . . . . . . . 22
3.4 GPU implementation. . . . . . . . . . . . . . . . . . . . . 23
3.4.1 Memory access . . . . . . . . . . . . . . . . . . . . . . 23
3.4.2 Multi-GPU implementation. . . . . . . . . . . . . . . . . 24
4 Numerical results 28
4.1 Spurious velocity elimination . . . . . . . . . . . . . . . 28
4.2 One bubble rising . . . . . . . . . . . . . . . . . . . . . 29
4.3 two bubbles rising. . . . . . . . . . . . . . . . . . . . . 30
4.3.1 In-line case. . . . . . . . . . . . . . . . . . . . . . . 31
4.3.2 Off-line case . . . . . . . . . . . . . . . . . . . . . . 32
4.4 Performance of GPU implementation . . . . . . . . . . . . . 33
5 Conclusions 45
[1] U. Frisch, B. Hasslacher, and Y. Pomeau, “Lattice-gas automata for the Navier- Stokes equation,” Phys. Rev. Lett. 56, 1505, (1986).
[2] S. Wolfram, “Cellular automaton fluids 1: Basic theory,” J. Stat. Phys. 45, 471, (1986).
[3] F. J. Higuera, S. Sussi, and R. Benzi, “3-dimensional flows in complex geometries with the lattice Boltzmann method,” Europhys. Lett. 9, 345, (1989).
[4] F. J. Higuera, and J. Jem´enez, “Boltzmann approach to lattice gas simulations,” Europhys. Lett. 9, 663, (1989).
[5] P. L. Bhatnagar, E. P. Gross, and M. Grook, “A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems,” Phys. Rev. E 94, 511, (1954).
[6] S. Harris, “An introduction to the throry of the Boltzmann equation,” Holt, Rinehart and Winston, New York, (1971).
[7] U. Frisch, D. d’Humi`eres, B. Hasslacher, P. Lallemand, Y. Pomeau, and J.
P. Rivet, “Lattice gas hydrodynamics in two and three dimensions,” Complex Syst. 1, 649, (1987).
[8] D. O. Martinez, W. H. Matthaeus, S. Chen, and D. C. Montgomery, “Comparison of spectral method and lattice Boltzmann simulations of two- dimensional hydrodynamics,” Phys. Fluids. 6, 1285, (1994).
[9] S. Osher and R. P. Fedkiw, “Level set method: An overview and some recent results,” J. Comput. Phys. 169, 463, (2001).
[10] R. Scardovelli and S. Zaleski, “Direct numerical simulation of free-surface and interfical flow,” Annu.Rev.Fluid Mech. 31, 567, (1999).
[11] T. Y. Hou, J. S. Lowengrub, and M. J. Shelley, “Boundary integral methods for multicomponent fluids and multiphase materials,” J. Comput.Phys. 169, 302, (2001).
[12] P. Y. Hong, L. M. Huang, L. S. Lin, and C.A. Lin, “Scalable multi-relaxation- time lattice Boltzmann simulations on multi-GPU cluster,” Computers & Fluids. 110, 1-8, (2015).
[13] X. Shan and H. Chen, “Lattice Boltzmann model for simulating flows with multiple phases and components,” Phys. Rev. E. 47, 1815-1819, (1993).
[14] X. Shan and H. Chen, “Simulation of Nonideal Gases and Liquid-GasPhase Transitions by the Lattice Boltzmann Equation,” Phys. Rev. E. 49, 2941-2948, (1994).
[15] X. Shan, and G. D. Doolen, “Multicomponent Lattice-Boltzmann Model With Interparticle Interaction,” J. Stat. Phys. 52, 379-393, (1995).
[16] M. R. Swift, W. R. Osborn, and J. M. Yeomans “Lattice Boltzmann simulation of nonideal fluids,” Phys. Rev. Lett. 75(5), 830-833, (1995).
[17] M. R. Swift, W. R. Osborn, and J. M. Yeomans “Lattice Boltzmann simulations of liquid-gas and bunary-fluid systems,” Phys. Rev. E,54, 5041-5052, (1996).
[18] T. Inamuro, T. Ogata, S. Tajima, and N. Konishi, “A lattice Boltzmann method for incompressible two-phase flows with large density differences,” J. Comput. Phys. 198, 628, (2004).
[19] T. Lee and C. L. Lin, “A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio,” J. Comput. 206, 16-47, (2005)
[20] T. Lee and P. F. Fischer, “Eliminating parasitic currents in the lattice Boltzmann equation method for nonideal gases,” Phys. Rev.E. 74, 046709, (2006).
[21] T. Lee and L. Liu, “Lattice Boltzmann simulations of micron-scale drop impact on dry surfaces,” J. Comput. Phys. 229, 8045-8063, (2010).
[22] D. Bhaga and M. E. Weber, “In-line interaction of a pair of bubbles in a viscous liquid,” Chem. Eng. Sci. 35, 2467-2474, (1980).
[23] D. Bhaga and M. E. Weber, “Bubbles in viscous liquids: shapes, wakes and velocities,” J. Fluid Mech. 105, 61-85, (1981).
[24] R. Krishna, M.I. Urseanu, J. M. van Baten, and J. Ellenberger, “Rise velocity of a swarm of large gas bubbles in liquids,” Chem. Eng. Sci. 54, 171-183, (1999).
[25] N. Takada, M. Misawa, A. Tomiyama, and S. Fujiwara, “Numerical simulation of two- and three-dimensional two-phase fluid motion by lattice Boltzmann method,” Comput. Phys. Commun. 129, 233-246, (2000).
[26] M. Cheng, J. Hua, and J. Lou, “Simulation of bubble–bubble interaction using a lattice Boltzmann method,” Comput. Fluids. 39, 260-270, (2010).
[27] H. W. Zheng, C. Shu, and Y. T. Chew, “Lattice Boltzmann interface capturing method for incompressible flows,” Phys. Rev. E 72, 056705, (2005).
[28] L. Amaya-Bower, T. Lee, “Single bubble rising dynamics for moderate Reynolds number using Lattice Boltzmann Method,” Comput. Fluids. 39, 1191-1207, (2010).
[29] J. Bolz, I. Farmer, E. Grinspun, and P. Schro¨der, “Sparse matrix solvers on the GPU: Conjugate gradients and multigrid,” ACM Trans. Graph. (SIGGRAPH) 22, 917, (2003).
[30] F. A. Kuo, M. R. Smith, C. W. Hsieh, C. Y. Chou, and J. S. Wu, “GPU acceleration for general conservation equations and its application to several engineering problems,” Comput. Fluids. 45, 147, (2011).
[31] J. T¨olke, and M. Krafczyk, “TeraFLOP computing on a desktop PC with GPUs for 3D CFD,” Comput. Fluid D. 22, 443-456, (2008).
[32] C. Obrecht, F. Kuznik, B. Tourancheau, and J. J. Roux, “A new approach to the lattice Boltzmann method for graphics processing units,” Comput. Math. Appl. 61, 3628, (2011).
[33] X. Wang, T. Aoki, “Multi-GPU performance of incompressible flow computation by lattice Boltzmann method on GPU cluster,” Parallel. Computing. 37, 521, (2011).
[34] J. Myre, S. D. C. Walsh, D. Lilja and M. O. Saar, “Performance analysis of single-phase, multiphase, and multicomponent lattice-Boltzmann fluid flow simulations on GPU clusters,” Concurrency Comput.: Pract. and Exper. 23, 332-350, (2010).
[35] X. Li, Y. Zhang, X. Wang, Wei Ge , “Performance analysis of single-phase, multiphase, and multicomponent lattice-Boltzmann fluid flow simulations on GPU clusters,” Concurrency Comput.: Pract. and Exper. 23, 332-350, (2010).
[36] T. C. Huang and C. A. Lin, “Lattice Boltzmann Simulations of Two-phase Flow at High Density Ratio on Multi-GPU CLuster,” National Tsing Hua University, Department of Power Mechanical Engineering, (2016).
[37] Tamas I. Gombosi, “Gas kinetic theorym,” Cambridge University Press, (1994).
[38] X. He, and L. S. Luo, “Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation,” Phys. Rev. E 56, 6811-6817, (1997).
[39] D. A. Wolf-Gladrow, “Lattice-gas cellular automata and lattice Boltzmann models - an introduction,” Springer, Lecture Notes in Mathematics, p.159, (2000).
[40] T. Lee, “Effects of incompressibility on the elimination of parasitic currents in the lattice Boltzmann equation method for binary fluids ,” Comput. Math. Appl. 58, 987-994, (2009).
[41] L. Amaya-Bower, T. Lee, “Numerical simulation of single bubble rising in vertical and inclined square channel using lattice Boltzmann method,” Chem. Eng. Sci. 66, 935-952, (2011).
[42] H. W. Chang, P .Y. Hong, L. S. Lin and C. A. Lin, “Simulations of flow instability in three dimensional deep cavities with multi relaxation time lattice Boltzmann method on graphic processing units,” Comput. & Fluids. 88, 866- 871, (2013).
[43] R. Clift, J. R. Grace and M. E. Weber, “Bubbles, Drops, and Particles,” New York: Academic Press, (1978).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *