帳號:guest(3.12.36.175)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張燕秋
作者(外文):Zhang, Yan-Qiu
論文名稱(中文):使用沉浸邊界法模擬風力發電機流固耦合現象
論文名稱(外文):Simulating the flow-structure interaction of wind turbine using Immersed Boundary Method
指導教授(中文):林昭安
指導教授(外文):Lin, Chao-An
口試委員(中文):吳毓庭
牛仰堯
口試委員(外文):Wu, Yu-Ting
Niu, Yang-Yao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:104033466
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:63
中文關鍵詞:流固耦合沉浸邊界法風機能源效率
外文關鍵詞:Flow-Structure InteractionImmersed Boundary MethodWind TurbinePower efficient
相關次數:
  • 推薦推薦:0
  • 點閱點閱:196
  • 評分評分:*****
  • 下載下載:10
  • 收藏收藏:0
本研究中,在卡氏座標中使用直接沉浸邊界法模擬水平風力發電機的流固耦合,並且採用不規則網格。針對風機這一複雜幾何結構,本研究使用基於標準鑲嵌語言法(Standard Tessellation Language (STL))格式的三角形表面網格的幾何標記法來重構沉浸邊界。

本研究同時模擬了有支撐塔和沒有支撐塔的風機,發現支撐塔不僅僅提供支撐,並且會對風機的能源效率和葉片的動力係數有所影響。基於不同雷諾數的模擬(Re=500以及Re=1500)也在本研究中展現。為了分析風機的能源效率(C_p)以及風機葉片的空氣動力係數,本研究使用λ-C_p圖來展示,得到最佳的葉尖速率(Tip Speed Ratio(TSR):λ)。
In the present study, the fluid-structure interaction of a horizontal wind turbine is simulated by using a direct forcing immersed boundary scheme. The Cartesian coordinate with non-uniform grid is adopted. In order to deal with the complex-shape of the wind turbine, the geometry tagging method of reconstruction immersed boundary with the triangular facet surface is added into the numerical model.
The cases with and without the tower are simulated. The fluid field is investigated at different Reynold numbers Re=500 and Re=1500. The tip speed ratio λ in both cases are kept at 7.0. To analyze the power coefficient (C_p) of the wind turbine and the aerodynamic characteristic of turbine blades, the effects of turbine efficiency are examined using the λ-C_p map.
Abstract i
Contents iii
List of Figures iv
List of Tables vii
1. Introduction 1
1.1 Introduction 1
1.2 Literature Survey 2
1.3 Objectives and Motivations 6
2 Numerical Methods 7
2.1 Immersed-Boundary Method 7
2.2 Geometry tagging algorithm 12
2.3 Complete solution procedure 18
3. Simulation of wind turbine 32
3.1 Structural properties of the wind turbine 32
3.2 Mesh design and setup 32
3.3 Results and discussion 35
4. Conclusions 57

[1] Mok DP, Wall WA. 2001. Partitioned analysis schemes for the
transient interaction of incompressible flows and nonlinear flexible
structures. Trends in computational structural mechanics
[2] C.S. Peskin. 1972. Flow patterns around heart valves: a numerical method. J. Comp. Phys.10: 252-271.
[3] C.S. Peskin. 1982. The fluid dynamics of heart valves: Experimental, theritiacal and computational methods. ANNU. REV. FLUID. MECH.14: 235-259.
[4] G. Tryggvason , B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas, Y.-J. Jan. 20001. A Front-Tracking Method for the Computations of Multiphase Flow. J. Comp. Phys. 169: 708-759.
[5] S. Balay and K. Buschelman and W. D. Gropp and D. Kaushik and M. G. Knepley and L. C. Mclnnes. 2010. PETSc Web page < http: //www.mcs.anl.gov/petsc >.
[6] H.W. Hsu, F.N. Hwang, Z.H. Wei, S.H. Lai, C.A. Lin. 2011. A parallel multilevel preconditioned iterative pressure Poisson solver for the large-eddy simulation of turbulent flow inside a duct. Comput. Fluids 45: 138-146.
[7] H.H.Hu.1996. Direct simulation of flow s of solid liquid mixtures. International Journal of Multiphase Flow 22: 335-352.
[8] Andreas Kolke, Elmar Walhorn, Bjorn Hubner, Dieter Dinkler. 2004. Strongly Coupled Analysis of Fluid-Structure Interaction
with Free Surface Flow. PAMM · Proc. Appl. Math. Mech. 4, 338–339
[9] K. Stein, R. Benney, V. Kalro, T.E. Tezduyar, J. Leonard, M. Accorsi. 2000. Parachute fluid–structure interactions: 3-D computation
Comput. Methods Appl. Mech. Engrg. pp. 373-386
[10] M. Glück, M. Breuer, F. Durst, A. Halfmann, E. Rank. 2003. Computation of wind-induced vibrations of flexible shells and membranous structures. Fluids Struct. pp. 739-765
[11] Y. Bazilevs, V.M. Calo, Y. Zhang, T.J.R. Hughes. 2006. Isogeometric fluid–structure interaction analysis with applications to arterial blood flow
Comput. Mech. pp. 310-322
[12] Ali Eken, Mehmet Sahin. 2017. A parallel monolithic approach for fluid-structure interaction in a cerebral aneurysm. Comp. Fluids 153:61-75
[13] T.J.R. Hughes, G.M. Hulbert. 1988. Space–time finite element methods for elastodynamics: Formulations and error estimates Comput. Methods Appl. Mech. Engrg. pp. 339-363
[14] M. Behr, T.E. Tezduyar. 1994. Finite element solution strategies for large-scale flow simulations Comput. Methods Appl. Mech. Engrg. pp. 3-24
[15] Tezduyar TE, Sathe S. 2007. Modelling of fluid-structure interactions with the space-time finite elements: solution techniques. Int J Numer Methods Fluids 54: 855–900
[16] S.W. Su, M.C. Lai, C.A. Lin. 2007. A simple immersed boundary technique for simulating amplex flows with rigid boundary. Comput. Fluids 36: 313-324.
[17] Wu Y, Cai X-C. 2014. A fully implicit domain decomposition based ALE framework for three-dimensional fluid–structure interaction with application in blood flow computation. J. Comp. Phys. 258:524–537.
[18] Figueroa, C. A., I. E. Vignon-Clementel, K. E. Jansen, T. J. R. Hughes, and C. A. Taylor. 2006. A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput. Methods Appl. Mech. Eng. 195(41–43):5685–5706.
[19] T. Ye, R. Mittal, H.S. Udaykumar, W. Shyy. 1999. An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries. J. Comp. Phys. 156: 209-240.
[20] R.J. LeVeque, Z. Li. 1994. The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal. 156: 1019-1044.
[21] R.J. LeVeque, Z. Li. 1997. The immersed interface method for Stokes flow with elastic boundaries or surface tension. Siam J. Dci. Comput. 18: 709-735.
[22] D. Calhoun. 2002. A Cartesian grid method for solving the two-dimensional streamfunction-vorticity equations in irresgular regions. J. Comp. Phys. 176: 231-275.
[23] Z. Li, M.C. Lai. 2001. The ommersed interface method for the Navier-Stokes equations with singular forces. J. Comp. Phys. 171:
[24] L.E. Silva, A. Silveira-Neto, J.J.R. Damasceno. 2003. Numerical simulation of two-dimensional flow over a circular cylinder using the immersed boundary method. J. Comp. Phys. 189: 351-370.
[25] D. Glodstein, R. Handler, L. Sirovich. 1993. Modeling a no-slip flow with an external force field. J. Comp. Phys. 105: 354-366.
[26] E.M. Saiki, S. Biringen. 1996. Numerical simulation of a cylinder in uniform flow: application of a virtual boundary method. J. Comp. Phys. 123: 450-465.
[27] J. Mohd-Yusof. 1997. Combined immersed boundary/B-Spline method for simulationsof flows in complex geometries in complex geometries. CTR annual research briefs NASA Ames/Stanford University.
[28] E.A. Fadlum, R. Verzicco, P. Orlandi, J. Mohd-Yusof. 2000. Combined immersed boundary methods for three dimensional complex flow simulations. J. Comp. Phys. 161: 35-60.
[29] Y.H. Tseng, J.H. Ferziger. 2003. A ghost-cell immersed boundary boundary method for flow in complex geometry. J. Comp. Phys. 192: 593-623.
[30] H.S. Udaykumar, R. MIttal, W. Shyy. 1999. Computation of solid-liquid phase fronts in the sharp interface limit on fixed grids. J. Comp. Phys. 153: 535-574.
[31] H.S. Udaykumar, R. MIttal, P. Rampunggoon, A. Khanna. 2001. A sharp interface Cartesian grid method for simulating flows with complex moving boundaries. J. Comp. Phys. 174: 345-380.
[32] S. Marella, S. Krishnan, H. Liu, H.S. Udaykumar. 2005. Sharp interface Cartesian grid method I: An easily implemented technique for 3D moving boundary computations. J. Comp. Phys. 210: 1-31.
[33] E. Balaras. 2004. Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations. Comput. Fluids 33: 375-404. Bibliography 74
[34] J. Yang, E. Balaras. 2006. An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries. J. Comp. Phys. 215: 12-24. Bibliography 75
[35] C.C. Liao, Y.W. Chang, C.A. Lin and J.M. McDonough. 2010. Simulating flows with moving rigid boundary using immersed-boundary method. Comput. Fluids 39: 152-167.
[36] Ming-Chen Hsu, Yuri Bazilevs, 2012. “Fluid–structure interaction modeling of wind turbines: Simulating the full machine”, Comput Mech, vol. 50, pp 821–833
[37] Y. Bazilevs, M.-C. Hsu, I. Akkerman, S. Wright, K. Takizawa, B. Henicke, T. Spielman, and T. E. Tezduyar. 2011. 3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics. International Journal for Numerical Methods inFluids, 65:207–235
[38] Christoph Schulz, Patrick Letzgus, Thorsten Lutz, Ewald Krämer, CFD study on the impact of yawed inflow on loads, power and near wake of a generic wind turbine, Wind Energy, 2017, 20, 2, 253
[39] H.W. Hsu, F.N. Hwang, Z.H. Wei, S.H. Lai, C.A. Lin. 2011. A parallel multilevel preconditioned iterative pressure Poisson solver for the large-eddy simulation of turbulent flow inside a duct. Comput. Fluids 45: 138-146.
[40] Iaccarino G, Verzicco R. 2003. Immersed boundary technique for turbulent flow simulations. Appl. Mech. Rev. 56:331–47
[41] Tzu-Jung Lee, C. A. Lin, R. S. PATIL. 2016. Simulations of flow and structure interaction using Immersed Boundary Method. National Tsing Hua University, Master Thesis
[42] J. Jonkman, S. Butterfield, W. Musial, and G. Scott. 2009. Definition of a 5-MW Reference Wind Turbine for Offshore System Development. Technical Report NREL/TP-500-38060 February 2009
[43] Kou-Wei Chung, 2016, Optimize the performance of horizontal-axis wind turbine with adapting genetic algorithm, National Tsing Hua University, Master Thesis
[44] Lissaman, P. 1983. Low-Reynolds-Number Airfoils. Annual Review of Fluid Mechanics, Vol. 15, No. 1, pp. 223–239.
[45] Y. Bazilevs, M.-C. Hsu, J. Kiendl, R. Wuchner, and K.-U. Blet- ¨ zinger. 2011. 3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades. International Journal for Numerical Methods in Fluids, 65:236– 253.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *