|
[1] Mok DP, Wall WA. 2001. Partitioned analysis schemes for the transient interaction of incompressible flows and nonlinear flexible structures. Trends in computational structural mechanics [2] C.S. Peskin. 1972. Flow patterns around heart valves: a numerical method. J. Comp. Phys.10: 252-271. [3] C.S. Peskin. 1982. The fluid dynamics of heart valves: Experimental, theritiacal and computational methods. ANNU. REV. FLUID. MECH.14: 235-259. [4] G. Tryggvason , B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas, Y.-J. Jan. 20001. A Front-Tracking Method for the Computations of Multiphase Flow. J. Comp. Phys. 169: 708-759. [5] S. Balay and K. Buschelman and W. D. Gropp and D. Kaushik and M. G. Knepley and L. C. Mclnnes. 2010. PETSc Web page < http: //www.mcs.anl.gov/petsc >. [6] H.W. Hsu, F.N. Hwang, Z.H. Wei, S.H. Lai, C.A. Lin. 2011. A parallel multilevel preconditioned iterative pressure Poisson solver for the large-eddy simulation of turbulent flow inside a duct. Comput. Fluids 45: 138-146. [7] H.H.Hu.1996. Direct simulation of flow s of solid liquid mixtures. International Journal of Multiphase Flow 22: 335-352. [8] Andreas Kolke, Elmar Walhorn, Bjorn Hubner, Dieter Dinkler. 2004. Strongly Coupled Analysis of Fluid-Structure Interaction with Free Surface Flow. PAMM · Proc. Appl. Math. Mech. 4, 338–339 [9] K. Stein, R. Benney, V. Kalro, T.E. Tezduyar, J. Leonard, M. Accorsi. 2000. Parachute fluid–structure interactions: 3-D computation Comput. Methods Appl. Mech. Engrg. pp. 373-386 [10] M. Glück, M. Breuer, F. Durst, A. Halfmann, E. Rank. 2003. Computation of wind-induced vibrations of flexible shells and membranous structures. Fluids Struct. pp. 739-765 [11] Y. Bazilevs, V.M. Calo, Y. Zhang, T.J.R. Hughes. 2006. Isogeometric fluid–structure interaction analysis with applications to arterial blood flow Comput. Mech. pp. 310-322 [12] Ali Eken, Mehmet Sahin. 2017. A parallel monolithic approach for fluid-structure interaction in a cerebral aneurysm. Comp. Fluids 153:61-75 [13] T.J.R. Hughes, G.M. Hulbert. 1988. Space–time finite element methods for elastodynamics: Formulations and error estimates Comput. Methods Appl. Mech. Engrg. pp. 339-363 [14] M. Behr, T.E. Tezduyar. 1994. Finite element solution strategies for large-scale flow simulations Comput. Methods Appl. Mech. Engrg. pp. 3-24 [15] Tezduyar TE, Sathe S. 2007. Modelling of fluid-structure interactions with the space-time finite elements: solution techniques. Int J Numer Methods Fluids 54: 855–900 [16] S.W. Su, M.C. Lai, C.A. Lin. 2007. A simple immersed boundary technique for simulating amplex flows with rigid boundary. Comput. Fluids 36: 313-324. [17] Wu Y, Cai X-C. 2014. A fully implicit domain decomposition based ALE framework for three-dimensional fluid–structure interaction with application in blood flow computation. J. Comp. Phys. 258:524–537. [18] Figueroa, C. A., I. E. Vignon-Clementel, K. E. Jansen, T. J. R. Hughes, and C. A. Taylor. 2006. A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput. Methods Appl. Mech. Eng. 195(41–43):5685–5706. [19] T. Ye, R. Mittal, H.S. Udaykumar, W. Shyy. 1999. An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries. J. Comp. Phys. 156: 209-240. [20] R.J. LeVeque, Z. Li. 1994. The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal. 156: 1019-1044. [21] R.J. LeVeque, Z. Li. 1997. The immersed interface method for Stokes flow with elastic boundaries or surface tension. Siam J. Dci. Comput. 18: 709-735. [22] D. Calhoun. 2002. A Cartesian grid method for solving the two-dimensional streamfunction-vorticity equations in irresgular regions. J. Comp. Phys. 176: 231-275. [23] Z. Li, M.C. Lai. 2001. The ommersed interface method for the Navier-Stokes equations with singular forces. J. Comp. Phys. 171: [24] L.E. Silva, A. Silveira-Neto, J.J.R. Damasceno. 2003. Numerical simulation of two-dimensional flow over a circular cylinder using the immersed boundary method. J. Comp. Phys. 189: 351-370. [25] D. Glodstein, R. Handler, L. Sirovich. 1993. Modeling a no-slip flow with an external force field. J. Comp. Phys. 105: 354-366. [26] E.M. Saiki, S. Biringen. 1996. Numerical simulation of a cylinder in uniform flow: application of a virtual boundary method. J. Comp. Phys. 123: 450-465. [27] J. Mohd-Yusof. 1997. Combined immersed boundary/B-Spline method for simulationsof flows in complex geometries in complex geometries. CTR annual research briefs NASA Ames/Stanford University. [28] E.A. Fadlum, R. Verzicco, P. Orlandi, J. Mohd-Yusof. 2000. Combined immersed boundary methods for three dimensional complex flow simulations. J. Comp. Phys. 161: 35-60. [29] Y.H. Tseng, J.H. Ferziger. 2003. A ghost-cell immersed boundary boundary method for flow in complex geometry. J. Comp. Phys. 192: 593-623. [30] H.S. Udaykumar, R. MIttal, W. Shyy. 1999. Computation of solid-liquid phase fronts in the sharp interface limit on fixed grids. J. Comp. Phys. 153: 535-574. [31] H.S. Udaykumar, R. MIttal, P. Rampunggoon, A. Khanna. 2001. A sharp interface Cartesian grid method for simulating flows with complex moving boundaries. J. Comp. Phys. 174: 345-380. [32] S. Marella, S. Krishnan, H. Liu, H.S. Udaykumar. 2005. Sharp interface Cartesian grid method I: An easily implemented technique for 3D moving boundary computations. J. Comp. Phys. 210: 1-31. [33] E. Balaras. 2004. Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations. Comput. Fluids 33: 375-404. Bibliography 74 [34] J. Yang, E. Balaras. 2006. An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries. J. Comp. Phys. 215: 12-24. Bibliography 75 [35] C.C. Liao, Y.W. Chang, C.A. Lin and J.M. McDonough. 2010. Simulating flows with moving rigid boundary using immersed-boundary method. Comput. Fluids 39: 152-167. [36] Ming-Chen Hsu, Yuri Bazilevs, 2012. “Fluid–structure interaction modeling of wind turbines: Simulating the full machine”, Comput Mech, vol. 50, pp 821–833 [37] Y. Bazilevs, M.-C. Hsu, I. Akkerman, S. Wright, K. Takizawa, B. Henicke, T. Spielman, and T. E. Tezduyar. 2011. 3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics. International Journal for Numerical Methods inFluids, 65:207–235 [38] Christoph Schulz, Patrick Letzgus, Thorsten Lutz, Ewald Krämer, CFD study on the impact of yawed inflow on loads, power and near wake of a generic wind turbine, Wind Energy, 2017, 20, 2, 253 [39] H.W. Hsu, F.N. Hwang, Z.H. Wei, S.H. Lai, C.A. Lin. 2011. A parallel multilevel preconditioned iterative pressure Poisson solver for the large-eddy simulation of turbulent flow inside a duct. Comput. Fluids 45: 138-146. [40] Iaccarino G, Verzicco R. 2003. Immersed boundary technique for turbulent flow simulations. Appl. Mech. Rev. 56:331–47 [41] Tzu-Jung Lee, C. A. Lin, R. S. PATIL. 2016. Simulations of flow and structure interaction using Immersed Boundary Method. National Tsing Hua University, Master Thesis [42] J. Jonkman, S. Butterfield, W. Musial, and G. Scott. 2009. Definition of a 5-MW Reference Wind Turbine for Offshore System Development. Technical Report NREL/TP-500-38060 February 2009 [43] Kou-Wei Chung, 2016, Optimize the performance of horizontal-axis wind turbine with adapting genetic algorithm, National Tsing Hua University, Master Thesis [44] Lissaman, P. 1983. Low-Reynolds-Number Airfoils. Annual Review of Fluid Mechanics, Vol. 15, No. 1, pp. 223–239. [45] Y. Bazilevs, M.-C. Hsu, J. Kiendl, R. Wuchner, and K.-U. Blet- ¨ zinger. 2011. 3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades. International Journal for Numerical Methods in Fluids, 65:236– 253.
|