帳號:guest(3.14.129.236)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡俊毅
作者(外文):Tsai, Chun-Yi
論文名稱(中文):具有穩定的電容保持率的高性能預插入鈉離子超級電容器
論文名稱(外文):The High Performance of Preintercalated Sodium Ion Supercapacitor with Stably Capacitive Retention
指導教授(中文):衛子健
指導教授(外文):Wei, Tzu-Chien
口試委員(中文):陳志銘
劉振良
吳茂松
潘詠庭
口試委員(外文):Chen, Chih-Ming
Liu, Cheng-Liang
Wu, Mao-Sung
Pan, Yung-Tin
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:104032816
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:154
中文關鍵詞:超級電容器水鈉錳礦層狀氧化錳納離子-插層化合物
外文關鍵詞:SupercapacitorsBirnessiteLayered manganese oxideNa+-intercalated compounds
相關次數:
  • 推薦推薦:0
  • 點閱點閱:47
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
超級電容器因其具有快速充放電以及超過10萬次的循環壽命而備受矚目。超級電容器技術中的擬電容器(pseudocapacitor)可通過電極表面快速可逆和連續的法拉第氧化還原反應,極大地提高了電流密度與電容量。錳氧化物 (MnO2),由於其成本低、無毒、含土量大、大的理論比電容值等優點,是製作擬電容器的潛力材料。MnO2的多晶型是基於MnO6八面體以不同排列方式建構出構造隧道的角共享或層結構的邊緣共享結構,可分為一維結構的α-、β-和γ-,二維結構的δ-,和 λ-的三維結構,而在各種錳氧化物結構中,以具有內部陽離子和水分子的δ-MnO2 (Birnessite)有更開放的結構的層狀結構,可增強離子和電子之間的電荷轉移並縮短離子擴散長度而適合用於儲能的應用。有鑒於此,本研究我們開發以陽極電沉積方式製作以Na+ 預插層的δ-MnO2(NaxMnO2)薄膜電極並成功應用於超級電容器中。
藉由電感耦合等離子體質譜 (ICP-MS) 和 X 射線光電子能譜儀 (XPS)、X 射線衍射 (XRD)、場發射掃描電子顯微鏡 ( FE-SEM) 和透射式電子顯微鏡 (TEM)來分析其成分及微結構。後續更進一步以各式電化學分析如循環伏安法、定電流充放電、電化學阻抗研究了非電容和電容儲能機制的貢獻。最後確立了鈉/錳比為 0.16的條件下可展現穩定非擴散電容貢獻,證明了Mn-O-Na鍵合的優越性,有效地支撐了MnO6 層板。此Na0.16MnO2的電極比電容在 1 A g-1 的電流密度下達到 560 F g-1,同時保持恆定容量達 10000 次循環壽命檢測。Na0.16MnO2 的高電化學效能主要歸因於δ-MnO2中預插層Na+離子的原子柱,有效抑制了充放電過程中層間的變形與Mn2+的溶解,從而有利於長期穩定的電化學表現。
Supercapacitors have attracted visibly attention on ultra-fast charge/discharge storage devices and reversible long-term cycling performance, The pseudocapacitors in supercapacitive techanologies can greatly enhance the current density and capacitance through the fast reversible and continuous faradic redox reaction on the surface of electrode. Manganese oxides have intensively sonsidered as a potential pseudocapacitive materials on account of their low cost, nontoxicity, abundance of earth content, and large theoretical specific capacitance. The polymorphism of MnO2 is based on the different arrangements of MnO6 octahedron construct corner-sharing of tunnel or edge-sharing of layer structure with α-, β-, and γ- of one dimension structure, δ- of two dimension structure, and λ- of three dimension structure. Among various manganese oxide structures, the -MnO2 (Birnessite) with inside cations and water molecules possesses more open structures to enhance charge transfer between ions and electrons and shorten ionic diffusion length for energy storage applications. In view of this, we develop galvanostatically anodic deposition to fabricate Na+-preintercalated -type MnO2 (NaxMnO2) thin film electrodes and successfully applied it for supercapacitor. To modulate the applied mass of birnessite-MnO2, the thin film electrode is directly synthesized by adjusting the current of anodic electrodeposition, the concentration of Mn2+ ions, pH value of the plating solution, and temperature on the current collector with binder-free combination.
We analyze the composition and microstructure of NaxMnO2 by the Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and X-ray Photoelectron Spectroscope (XPS), X-ray diffraction (TF-XRD), Field-Emission Scanning Electron Microscope (FE-SEM) and Transmission Electron Microscopy (TEM), respectively. In the follow-up, the various electrochemical analyzes such as Cyclic voltammetry(CV), Galvanostatic charge/discharge cycle (GCD), and electrochemical impedance spectroscopy(EIS) are further studied for investigating the non-capacitive and capacitive contributions of energy storage mechanism. Finally, the Na/Mn ratio is established as 0.16 for incredibly stable non-diffusion contribution which demonstrates the superiority of Mn-O-Na bonding with effectively buttressing MnO6 slabs.
The specific capacitance of Na0.16MnO2 reaches 560 F g-1 at the current density of 1 A g-1, while maintaining constant capacity up to 10000 cycles.The one step synthesized process of Na0.16MnO2 for the enhanced performance is mainly attributed to the atomic pillars of preintercalated Na+ ions in δ-MnO2 which effectively suppress the deformation of interlayer spacing during charge/discharge processes and thus benefit for long-term stability.
Table of Contents
Acknowledgment------------------------------------------------------i
中文摘要-----------------------------------------------------------iii
Abstract-----------------------------------------------------------iv
Table of Contents--------------------------------------------------vi
List of Tables-----------------------------------------------------ix
List of Figures-----------------------------------------------------x
Chapter 1-----------------------------------------------------------1
1-1 Introduction----------------------------------------------------1
1-2 Supercapacitors-------------------------------------------------3
1-3 Classification of Supercapacitors-------------------------------5
1-3.1 Electric Double Layer Capacitors (EDLCs)----------------------6
1-3.2 Pseudocapacitor-----------------------------------------------7
1-3.3 Hybrid Supercapacitor-----------------------------------------8
Chapter 2 Literature Review----------------------------------------11
2-1 Characteristics of Ruthenium Oxide-----------------------------11
2-2 Characterization and Crystallinity of Manganese Oxides---------15
Table 2-1 The various crystallization of manganese oxides (87)-----16
2-3 Preparations of Manganese Oxides-------------------------------18
2-3.1 Thermal decomposition process--------------------------------18
2-3.2 Co-precipitation process-------------------------------------20
2-3.3 Chemical Deposition Process----------------------------------21
2-3.4 Redox Deposition Process-------------------------------------25
2-3.5 Physical Vapor Deposition Process----------------------------26
2-3.6 Hydrothermal Process-----------------------------------------27
2-3.7 Electrochemical Deposition Process---------------------------30
2-4 The Effect of Heat Treatment on MnO2 Crystal Structure---------36
2-5 The strategies of enhancing electrochemical performance of MnO2 based supercapacitors----------------------------------------------45
2-5.1 Carbon species /birnessite composite-------------------------45
2-5.2 Metal Doping-------------------------------------------------52
2-5.3 Enhancing Structural Conductivity----------------------------60
2-6 The Energy Storage Mechanism of Manganese Oxides---------------71
2-7 Motivation of this study---------------------------------------77
Chapter 3 Experimental Method and Analysis-------------------------79
3-1 Materials------------------------------------------------------79
3-2 Instruments----------------------------------------------------79
3-3 Substrate pretreatment-----------------------------------------80
3-4 Anodic deposition of NaxMnO2 electrodes------------------------80
3-4.1 The synthesized mechanism of anodic deposition---------------83
3-5 Characteristics of NaxMnO2-------------------------------------84
3-5.1 Microstructure observation-----------------------------------84
3-5.2 X-ray diffraction analysis-----------------------------------84
3-5.3 Chemical composition and measurement-------------------------85
3-6 Electrochemical characteristics of NaxMnO2 analysis------------85
3-6.1 Cyclic voltammetry examination-------------------------------86
3-6.2 Chronopotentiometry------------------------------------------88
3-6.3 Chronoamperometry--------------------------------------------90
3-6.4 Capacitance Retention----------------------------------------91
Chapter 4 Results and Discussion-----------------------------------92
4-1 The Preintercalated NaxMnO2 Electrodes-------------------------92
4-1.1Element content of NaxMnO2 electrodes-------------------------92
4-1.2 XRD analysis of NaxMnO2 electrodes---------------------------93
4-1.4 XPS analysis of NaxMnO2 electrodes---------------------------94
4-1.5 Surface morphology and internal structure-------------------101
4-1.6 Electrochemical perofrmance for NaxMnO2 electrodes----------105
4-1.7 Electrochemical Impedance Spectroscopy----------------------132
Chapter 5 Conclusion----------------------------------------------136
Refereances-------------------------------------------------------138

Refereances
1. X. M. Liu, X. G. Zhang, NiO-Based Composite Electrode with RuO2 for Electrochemical Capacitors. Electrochimica Acta 49, 229-232 (2004).
2. B. E. Conway, W. G. Pell, Double-Layer and Pseudocapacitance Types of Electrochemical Capacitors and Their Applications to The Development of Hybrid Devices. Journal of Solid State Electrochemistry 7, 637-644 (2003).
3. R. Kötz, M. Carlen, Principles and Applications of Electrochemical Capacitors. Electrochimica Acta 45, 2483-2498 (2000).
4. L. Zhang, X. Hu, Z. Wang, F. Sun, D. G. Dorrell, A Review of Supercapacitor Modeling, Estimation, and Applications: A Control/Management Perspective. Renewable and Sustainable Energy Reviews 81, 1868-1878 (2018).
5. M. M. Thackeray et al., Li2MnO3-Stabilized LiMO2 (M = Mn, Ni, Co) Electrodes for Lithium-Ion Batteries. Journal of Materials Chemistry 17, 3112-3125 (2007).
6. J. Vetter et al., Ageing Mechanisms in Lithium-Ion Batteries. Journal of Power Sources 147, 269-281 (2005).
7. M. Y. Ho et al., A Review of Metal Oxide Composite Electrode Materials For Electrochemical Capacitors. Nano 09, 1430002 (2014).
8. J. P. Zheng, J. Huang, T. R. Jow, The Limitations of Energy Density for Electrochemical Capacitors. Journal of The Electrochemical Society 144, 2026-2031 (1997).
9. R. A. Huggins, Supercapacitors and Electrochemical Pulse Sources. Solid State Ionics 134, 179-195 (2000).
10. L. Liu, H. Zhao, Y. Lei, Review on Nanoarchitectured Current Collectors for Pseudocapacitors. 3, 1800341 (2019).
11. C. Hu, Chang, M.-J. Liu, K.-H. Chang, Anodic Deposition of Hydrous Ruthenium Oxide for Supercapacitors. Journal of Power Sources 163, 1126-1131 (2007).
12. K. Doblhofer, M. Metikoš, Z. Ogumi, H. Gerischer, Electrochemical Oxidation and Reduction of the RuO2/Ti Electrode Surface. Berichte der Bunsengesellschaft für physikalische Chemie 82, 1046-1050 (1978).
13. H. Y. Lee, V. Manivannan, J. B. Goodenough, Electrochemical Capacitors with KCl Electrolyte. Comptes Rendus de l'Académie des Sciences - Series IIC - Chemistry 2, 565-577 (1999).
14. M. Chigane, M. Ishikawa, M. Izaki, Preparation of Manganese Oxide thin Films by Electrolysis/Chemical Deposition and Electrochromism. Journal of Electrochemical Society 148, D96 (2001).
15. S.-L. Kuo, N.-L. Wu, Investigation of Pseudocapacitive Charge-Storage Reaction of MnO2⋅nHO Supercapacitors in Aqueous Electrolytes. Journal of Electrochemical Society 153, A1317 (2006).
16. R. N. Reddy, R. G. Reddy, Sol–Gel MnO2 as an Electrode Material for Electrochemical Capacitors. Journal of Power Sources 124, 330-337 (2003).
17. S. Ching, D. J. Petrovay, M. L. Jorgensen, S. L. Suib, Sol−Gel Synthesis of Layered Birnessite-Type Manganese Oxides. Inorganic Chemistry 36, 883-890 (1997).
18. I. Shafi, E. Liang, B. Li, Ultrafine Chromium Oxide (Cr2O3) Nanoparticles as a Pseudocapacitive Electrode Material for Supercapacitors. Journal of Alloys and Compounds 851, 156046 (2021).
19. R. Zhou et al., Charge Storage by Electrochemical Reaction of Water Bilayers Absorbed on MoS2 Monolayers. Scientific Reports 9, 3980 (2019).
20. B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. (Springer Science & Business Media, 2013).
21. J. A. Dean, Lange's Handbook of Chemistry. Materials and Manufacturing Processes 5, 687-688 (1990).
22. S. Wen, J.-W. Lee, I.-H. Yeo, J. Park, S.-i. Mho, The Role of Cations of the Electrolyte for the Pseudocapacitive Behavior of Metal Oxide Electrodes, MnO2 and RuO2. Electrochimica Acta 50, 849-855 (2004).
23. B. E. Conway, Transition from “Supercapacitor” to “Battery” Behavior in Electrochemical Energy Storage. Journal of Electrochemical Society 138, 1539-1548 (1991).
24. M. A. A. Mohd Abdah, N. H. N. Azman, S. Kulandaivalu, Y. Sulaiman, Review of the Use of Transition-Metal-Oxide and Conducting Polymer-Based Fibres for High-Performance Supercapacitors. Journal of Materials & Design 186, 108-199 (2020).
25. I. Tanahashi, A. Yoshida, A. Nishino, Preparation and Characterization of Activated Carbon Tablets for Electric Double Layer Capacitors. Bulletin of the Chemical Society of Japan 63, 2755-2758 (1990).
26. T. Weng, Chi, H. Teng, Characterization of High Porosity Carbon Electrodes Derived from Mesophase Pitch for Electric Double-Layer Capacitors. Journal of Electrochemical Society 148, A368 (2001).
27. S. Sarangapani, B. V. Tilak, C. P. Chen, Materials for Electrochemical Capacitors: Theoretical and Experimental Constraints. Journal of Electrochemical Society 143, 3791-3799 (1996).
28. S. Balasubramaniam, A. Mohanty, S. K. Balasingam, S. J. Kim, A. Ramadoss, Comprehensive Insight into the Mechanism, Material Selection and Performance Evaluation of Supercapatteries. Nano-Micro Letters 12, 85 (2020).
29. H. Wang, H. S. Casalongue, Y. Liang, H. Dai, Ni(OH)2 Nanoplates Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials. Journal of American Chemical Society 132, 7472-7477 (2010).
30. Q. Jiang, N. Kurra, M. Alhabeb, Y. Gogotsi, H. N. Alshareef, All Pseudocapacitive MXene-RuO2 Asymmetric Supercapacitors. Advanced Energy Materials 8, 1703043 (2018).
31. B. Yin, S. Zhang, H. Jiang, F. Qu, X. Wu, Phase-Controlled Synthesis of Polymorphic MnO2 Structures for Electrochemical Energy Storage. Journal of Materials Chemistry A 3, 5722-5729 (2015).
32. S. Korkmaz, F. Meydaneri Tezel, İ. A. Kariper, Synthesis and Characterization of GO/IrO2 Thin Film Supercapacitor. Journal of Alloys and Compounds 754, 14-25 (2018).
33. S. K. Meher, G. R. Rao, Ultralayered Co3O4 for High-Performance Supercapacitor Applications. Journal of Physical Chemistry C 115, 15646-15654 (2011).
34. H. Kanno, R. J. Holmes, Y. Sun, S. Kena-Cohen, S. R. Forrest, White Stacked Electrophosphorescent Organic Light-Emitting Devices Employing MoO3 as a Charge-Generation Layer. Advanced Materials 18, 339-342 (2006).
35. J. Yan et al., Advanced Asymmetric Supercapacitors Based on Ni(OH)2/Graphene and Porous Graphene Electrodes with High Energy Density. Advanced Functional Materials 22, 2632-2641 (2012).
36. B. J. Yoon et al., Chem. Phys. Lett. 388, 170 (2004).
37. G. L. Bullard, H. B. Sierra-Alcazar, H. L. Lee, J. L. Morris, Operating Principles of the Ultracapacitor. IEEE Transactions on Magnetics 25, 102-106 (1989).
38. S. Hadz¯i‐Jordanov, H. Angerstein‐Kozlowska, M. Vukovič, B. E. Conway, Reversibility and Growth Behavior of Surface Oxide Films at Ruthenium Electrodes. Journal of The Electrochemical Society 125, 1471-1480 (1978).
39. T. Liu, W. G. Pell, B. E. Conway, Self-Discharge and Potential Recovery Phenomena at Thermally and Electrochemically Prepared RuO2 Supercapacitor Electrodes. Electrochimica Acta 42, 3541-3552 (1997).
40. S. Trasatti, G. Buzzanca, Ruthenium Dioxide: A New Interesting Electrode Material. Solid State Structure and Electrochemical Behaviour. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 29, A1-A5 (1971).
41. I. H. Kim, K. B. Kim, Ruthenium Oxide Thin Film Electrodes Prepared by Electrostatic Spray Deposition and their Charge Storage Mechanism. Journal of Electrochemical Society 151, E7 (2004).
42. T. R. Jow, J. P. Zheng, Electrochemical Capacitors Using Hydrous Ruthenium Oxide and Hydrogen Inserted Ruthenium Oxide. Journal of Electrochemical Society 145, 49-52 (1998).
43. R. L. Penn, J. F. Banfield, Imperfect Oriented Attachment: Dislocation Generation in Defect-Free Nanocrystals. Science 281, 969-971 (1998).
44. M. Toupin, T. Brousse, D. Bélanger, Influence of Microstucture on The Charge Storage Properties of Chemically Synthesized Manganese Dioxide. Chemistry of Materials 14, 3946-3952 (2002).
45. D. Michell, D. A. J. Rand, R. Woods, A study of Ruthenium Electrodes by Cyclic Voltammetry and X-Ray Emission Spectroscopy. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 89, 11-27 (1978).
46. J. P. Zheng, T. R. Jow, A New Charge Storage Mechanism for Electrochemical Capacitors. Journal of The Electrochemical Society 142, L6-L8 (1995).
47. H. Sierra-Alcazar, K. Kern, G. Mason, R. Tong. (Electrochemical Society, Inc., 1988), pp. p. 607.
48. J. P. Zheng, P. J. Cygan, T. R. Jow, Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors. Journal of Electrochemical Society 142, 2699-2703 (1995).
49. J. P. Zheng, T. R. Jow, Q. X. Jia, X. D. Wu, Proton Insertion into Ruthenium Oxide Film Prepared by Pulsed Laser Deposition. Journal of Electrochemical Society 143, 1068-1070 (1996).
50. Q. L. Fang, D. A. Evans, S. L. Roberson, J. P. Zheng, Ruthenium Oxide Film Electrodes Prepared at Low Temperatures for Electrochemical Capacitors. Journal of Electrochemical Society 148, A833 (2001).
51. J. P. Zheng, T. R. Jow, High Energy and High Power Density Electrochemical Capacitors. Journal of Power Sources 62, 155-159 (1996).
52. R. Fu, Z. Ma, J. P. Zheng, Proton NMR and Dynamic Studies of Hydrous Ruthenium Oxide. Journal of Physical Chemistry B 106, 3592-3596 (2002).
53. J. C. Hunter, Preparation of a New Crystal Form of Manganese Dioxide: λ-MnO2. Journal of Solid State Chemistry 39, 142-147 (1981).
54. S. Zhu, W. Huo, X. Liu, Y. Zhang, Birnessite Based Nanostructures for Supercapacitors: Challenges, Strategies and Prospects. Nanoscale Advances 2, 37-54 (2020).
55. H. Liu et al., Influence of Fe Doping on the Crystal Structure, Electronic Structure and Supercapacitance Performance of Birnessite [(Na, K)x(Mn4+, Mn3+)2O4·1.5H2O] with High Areal Mass Loading. Electrochimica Acta 291, 31-40 (2018).
56. X. Tian, Y. Zhou, X. Tu, Z. Zhang, G. Du, Well-Dispersed LiFePO4 Nanoparticles Anchored on A Three-Dimensional Graphene Aerogel as High-Performance Positive Electrode Materials for Lithium-Ion Batteries. Journal of Power Sources 340, 40-50 (2017).
57. W. Jiang et al., Ternary Hybrids of Amorphous Nickel Hydroxide–Carbon Nanotube-Conducting Polymer for Supercapacitors with High Energy Density, Excellent Rate Capability, and Long Cycle Life. Advanced Functional Materials 25, 1063-1073 (2015).
58. T. Qin et al., Carbon Fabric Supported 3D Cobalt Oxides/Hydroxide Nanosheet Network as Cathode for Flexible All-Solid-State Asymmetric Supercapacitor. Dalton Transactions 47, 11503-11511 (2018).
59. W.-J. Zhang, K.-J. Huang, A Review of Recent Progress in Molybdenum Disulfide-Based Supercapacitors and Batteries. Inorganic Chemistry Frontiers 4, 1602-1620 (2017).
60. Y. Yan et al., Facile Synthesis of Vanadium Metal-Organic Frameworks for High-Performance Supercapacitors. Small 14, 1801815 (2018).
61. P. Le Goff, N. Baffier, S. Bach, J. P. Pereira-Ramos, R. Messina, Structural and Electrochemical Characteristics of a Lamellar Sodium Manganese Oxide Synthesized via A Sol-Gel Process. Solid State Ionics 61, 309-315 (1993).
62. P. Novák, J. Desilvestro, Electrochemical Insertion of Magnesium in Metal Oxides and Sulfides from Aprotic Electrolytes. Journal of Electrochemical Society 140, 140-144 (1993).
63. D. Buchholz et al., Toward Na-ion Batteries Synthesis and Characterization of a Novel High Capacity Na Ion Intercalation Material. 25, 142-148 (2013).
64. M. Toupin, T. Brousse, D. Bélanger, Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor. Chemistry of Materials 16, 3184-3190 (2004).
65. N. Yabuuchi et al., P2-Type Nax[Fe1/2Mn1/2]O2 Made from Earth-Abundant Elements for Rechargeable Na Batteries. Nature Materials 11, 512-517 (2012).
66. M. Sathiya, K. Hemalatha, K. Ramesha, J. M. Tarascon, A. S. Prakash, Synthesis, Structure, and Electrochemical Properties of the Layered Sodium Insertion Cathode Material: NaNi1/3Mn1/3Co1/3O2. Chemistry of Materials 24, 1846-1853 (2012).
67. W. Wei, X. Cui, W. Chen, D. G. J. C. s. r. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes. 40, 1697-1721 (2011).
68. W. Xiao, H. Xia, J. Y. Fuh, L. J. J. o. P. S. Lu, Growth of single-crystal α-MnO2 nanotubes prepared by a hydrothermal route and their electrochemical properties. 193, 935-938 (2009).
69. S. Zhao et al., Controlled Synthesis of Hierarchical Birnessite-Type MnO2 Nanoflowers for Supercapacitor Applications. Applied Surface Science 356, 259-265 (2015).
70. M. Xu, L. Kong, W. Zhou, H. Li, Hydrothermal Synthesis and Pseudocapacitance Properties of α-MnO2 Hollow Spheres and Hollow Urchins. The Journal of Physical Chemistry C 111, 19141-19147 (2007).
71. S. Li et al., Three-Dimensional MnO2 Nanowire/ZnO Nanorod Arrays Hybrid Nanostructure for High-Performance and Flexible Supercapacitor Electrode. Journal of Power Sources 256, 206-211 (2014).
72. Z.-S. Wu et al., High-Energy MnO2 Nanowire/Graphene and Graphene Asymmetric Electrochemical Capacitors. ACS Nano 4, 5835-5842 (2010).
73. H.-Y. Wang, F.-X. Xiao, L. Yu, B. Liu, X. W. Lou, Hierarchical α-MnO2 Nanowires@Ni1-xMnxOy Nanoflakes Core–Shell Nanostructures for Supercapacitors. Small 10, 3181-3186 (2014).
74. H. Jiang, T. Zhao, J. Ma, C. Yan, C. Li, Ultrafine Manganese Dioxide Nanowire Network for High-Performance Supercapacitors. Chemical Communications 47, 1264-1266 (2011).
75. C. Zhu et al., Self-Branched α-MnO2/δ-MnO2 Heterojunction Nanowires with Enhanced Pseudocapacitance. Materials Horizons 4, 415-422 (2017).
76. L. Mai, X. Tian, X. Xu, L. Chang, L. Xu, Nanowire Electrodes for Electrochemical Energy Storage Devices. Chemical Reviews 114, 11828-11862 (2014).
77. M. Huang et al., Self-Assembly of Mesoporous Nanotubes Assembled from Interwoven Ultrathin Birnessite-type MnO2 Nanosheets for Asymmetric Supercapacitors. Scientific Reports 4, 3878 (2014).
78. A. Ramírez et al., Evaluation of MnOx, Mn2O3, and Mn3O4 Electrodeposited Films for the Oxygen Evolution Reaction of Water. Journal of Physical Chemistry C 118, 14073-14081 (2014).
79. M. Xu, Y. Niu, Y. Li, S. Bao, C. M. Li, Synthesis of Sodium Manganese Oxides with Tailored Multi-Morphologies and Their Application in Lithium/Sodium Ion Batteries. RSC Advances 4, 30340-30345 (2014).
80. C. Liu, J. Li, P. Zhao, W. Guo, X. Yang, Fast Preparation of Na0.44MnO2 Nanorods via A High NaOH Concentration Hydrothermal Soft Chemical Reaction and Their Lithium Storage Properties. Journal of Nanoparticle Research 17, 142 (2015).
81. A. K. Sinha, M. Pradhan, T. Pal, Morphological Evolution of Two-Dimensional MnO2 Nanosheets and Their Shape Transformation to One-Dimensional Ultralong MnO2 Nanowires for Robust Catalytic Activity. Journal of Physical Chemistry C 117, 23976-23986 (2013).
82. F. Wang et al., Manganese Oxides with Rod-, Wire-, Tube-, and Flower-Like Morphologies: Highly Effective Catalysts for the Removal of Toluene. Environmental Science & Technology 46, 4034-4041 (2012).
83. Z. Liu, K. Xu, H. Sun, S. Yin, One-Step Synthesis of Single-Layer MnO2 Nanosheets with Multi-Role Sodium Dodecyl Sulfate for High-Performance Pseudocapacitors. Small 11, 2182-2191 (2015).
84. C. C. Hu, C.-Y. Hung, K. H. Chang, Y.-L. Yang, A Hierarchical Nanostructure Consisting of Amorphous MnO2, Mn3O4 Nanocrystallites, and Single-Crystalline MnOOH Nanowires for Supercapacitors. Journal of Power Sources 196, 847-850 (2011).
85. N. Jabeen et al., High-Performance 2.6 V Aqueous Asymmetric Supercapacitors based on In Situ Formed Na0.5MnO2 Nanosheet Assembled Nanowall Arrays. Advanced Materials 29, 1700804 (2017).
86. S. Devaraj, N. Munichandraiah, Effect of Crystallographic Structure of MnO2 on Its Electrochemical Capacitance Properties. Journal of Physical Chemistry C 112, 4406-4417 (2008).
87. J. E. Post, Manganese Oxide Minerals: Crystal Structures and Economic and Environmental Significance. Proceedings of the National Academy of Sciences 96, 3447-3454 (1999).
88. T. Brousse et al., Crystalline MnO2 as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors. Journal of Electrochemical Society 153, A2171 (2006).
89. O. Ghodbane, J.-L. Pascal, F. Favier, Microstructural Effects on Charge-Storage Properties in MnO2-Based Electrochemical Supercapacitors. ACS Applied Materials & Interfaces 1, 1130-1139 (2009).
90. D. Yan et al., Fabrication, In-Depth Characterization, and Formation Mechanism of Crystalline Porous Birnessite MnO2 Film with Amorphous Bottom Layers by Hydrothermal Method. Crystal Growth & Design 9, 218-222 (2009).
91. R. Chen, J. Yu, W. Xiao, Hierarchically Porous MnO2 Microspheres with Enhanced Adsorption Performance. Journal of Materials Chemistry A 1, 11682-11690 (2013).
92. G. Gershinsky, H. D. Yoo, Y. Gofer, D. Aurbach, Electrochemical and Spectroscopic Analysis of Mg2+ Intercalation into Thin Film Electrodes of Layered Oxides: V2O5 and MoO3. Langmuir 29, 10964-10972 (2013).
93. K. Kai et al., Electrochemical Characterization of Single-Layer MnO2 Nanosheets as A High-Capacitance Pseudocapacitor Electrode. Journal of Materials Chemistry 22, 14691-14695 (2012).
94. L. Mai et al., Fast Ionic Diffusion-Enabled Nanoflake Electrode by Spontaneous Electrochemical Preintercalation for High-Performance Supercapacitor. Scientific Reports 3, 1718 (2013).
95. Q. Feng, H. Kanoh, K. Ooi, Manganese Oxide Porous Crystals. Journal of Materials Chemistry 9, 319-333 (1999).
96. X. Zhang et al., Na-Birnessite with High Capacity and Long Cycle Life for Rechargeable Aqueous Sodium-Ion Battery Cathode Electrodes. Journal of Materials Chemistry A 4, 856-860 (2016).
97. Y. Li et al., From α-NaMnO2 to Crystal Water Containing Na-Birnessite: Enhanced Cycling Stability for Sodium-Ion Batteries. CrystEngComm 18, 3136-3141 (2016).
98. K. W. Nam et al., Critical Role of Crystal Water for a Layered Cathode Material in Sodium Ion Batteries. Chemistry of Materials 27, 3721-3725 (2015).
99. H. Kim, B. N. Popov, Synthesis and Characterization of MnO2-Based Mixed Oxides as Supercapacitors. Journal of Electrochemical Society 150, D56 (2003).
100. H. Y. Lee, S. W. Kim, H. Y. Lee, Expansion of Active Site Area and Improvement of Kinetic Reversibility in Electrochemical Pseudocapacitor Electrode. Electrochemical and Solid-State Letters 4, A19 (2001).
101. H.-W. Chang et al., Electrochemical and in situ X-ray spectroscopic studies of MnO2/reduced graphene oxide nanocomposites as a supercapacitor. 18, 18705-18718 (2016).
102. Y. U. Jeong, A. Manthiram, Nanocrystalline Manganese Oxides for Electrochemical Capacitors with Neutral Electrolytes. Journal of The Electrochemical Society 149, A1419 (2002).
103. C. Tsang, J. Kim, A. Manthiram, Synthesis of Manganese Oxides by Reduction of KMnO4 with KBH4 in Aqueous Solutions. Journal of Solid State Chemistry 137, 28-32 (1998).
104. D. Yan et al., Formation of Ultrafine Three-Dimensional Hierarchical Birnessite-Type MnO2 Nanoflowers for Supercapacitor. Journal of Alloys and Compounds 607, 245-250 (2014).
105. S.-C. Pang, M. A. Anderson, T. W. Chapman, Novel Electrode Materials for Thin-Film Ultracapacitors: Comparison of Electrochemical Properties of Sol-Gel-Derived and Electrodeposited Manganese Dioxide. Journal of Electrochemical Society 147, 444 (2000).
106. S.-F. Chin, S.-C. Pang, M. A. Anderson, Material and Electrochemical Characterization of Tetrapropylammonium Manganese Oxide Thin Films as Novel Electrode Materials for Electrochemical Capacitors. Journal of Electrochemical Society 149, A379 (2002).
107. Y. Wu et al., Synthesis of δ-MnO2 Film on FTO Glass with High Electrochemical Performance. Ionics 22, 637-647 (2016).
108. J. Zhang et al., A Facile One-Step Synthesis of Mn3O4 Nanoparticles-Decorated TiO2 Nanotube Arrays as High Performance Electrode for Supercapacitors. Journal of Solid State Chemistry 246, 269-277 (2017).
109. M. Wu, G. A. Snook, G. Z. Chen, D. J. Fray, Redox Deposition of Manganese Oxide on Graphite for Supercapacitors. Electrochemistry Communications 6, 499-504 (2004).
110. J. N. Broughton, M. J. Brett, Electrochemical Capacitance in Manganese Thin Films with Chevron Microstructure. Electrochemical and Solid-State Letters 5, A279 (2002).
111. J. N. Broughton, M. J. Brett, Investigation of Thin Sputtered Mn Films for Electrochemical Capacitors. Electrochimica Acta 49, 4439-4446 (2004).
112. B. Djurfors, J. N. Broughton, M. J. Brett, D. G. Ivey, Microstructural Characterization of Porous Manganese Thin Films for Electrochemical Supercapacitor Applications. Journal of Materials Science 38, 4817-4830 (2003).
113. Z. Hu et al., Rapid Mass Production of Two-Dimensional Metal Oxides and Hydroxides via the Molten Salts Method. Nature Communications 8, 15630 (2017).
114. G. H. A. Therese, P. V. Kamath, Electrochemical Synthesis of Metal Oxides and Hydroxides. Chemistry of Materials 12, 1195-1204 (2000).
115. C.-C. Hu, T.-W. Tsou, Capacitive and Textural Characteristics of Hydrous Manganese Oxide Prepared by Anodic Deposition. Electrochimica Acta 47, 3523-3532 (2002).
116. X. Lang, A. Hirata, T. Fujita, M. Chen, Nanoporous Metal/Oxide Hybrid Electrodes for Electrochemical Supercapacitors. Nature Nanotechnology 6, 232-236 (2011).
117. W. Wei, X. Cui, X. Mao, W. Chen, D. G. Ivey, Morphology Evolution in Anodically Electrodeposited Manganese Oxide Nanostructures for Electrochemical Supercapacitor Applications—Effect of Supersaturation Ratio. Electrochimica Acta 56, 1619-1628 (2011).
118. W. Wei, X. Cui, W. Chen, D. G. Ivey, Manganese Oxide-Based Materials as Electrochemical Supercapacitor Electrodes. Chemical Society Reviews 40, 1697-1721 (2011).
119. F. Zhou, A. Izgorodin, R. K. Hocking, L. Spiccia, D. R. MacFarlane, Electrodeposited MnOx Films from Ionic Liquid for Electrocatalytic Water Oxidation. Advanced Energy Materials 2, 1013-1021 (2012).
120. M. POURBAIX, Recent Applications of Electrode Potential Measurements in the Thermodynamics and Kinetics of Corrosion of Metals. Corrosion 25, 267-284 (2013).
121. M. Chigane, M. Ishikawa, Manganese Oxide Thin Film Preparation by Potentiostatic Electrolyses and Electrochromism. Journal of Electrochemical Society 147, 2246 (2000).
122. C.-C. Hu, T.-W. Tsou, Ideal Capacitive Behavior of Hydrous Manganese Oxide Prepared by Anodic Deposition. Electrochemistry Communications 4, 105-109 (2002).
123. C. C. Hu, C. C. Wang, Nanostructures and Capacitive Characteristics of Hydrous Manganese Oxide Prepared by Electrochemical Deposition. Journal of Electrochemical Society 150, A1079 (2003).
124. M.-S. Wu, P.-C. Julia Chiang, Fabrication of Nanostructured Manganese Oxide Electrodes for Electrochemical Capacitors. Electrochemical and Solid-State Letters 7, A123 (2004).
125. M.-S. Wu, Electrochemical Capacitance from Manganese Oxide Nanowire Structure Synthesized by Cyclic Voltammetric Electrodeposition. Applied Physics Letters 87, 153102 (2005).
126. K. R. Prasad, N. Miura, Potentiodynamically Deposited Nanostructured Manganese Dioxide as Electrode Material for Electrochemical Redox Supercapacitors. Journal of Power Sources 135, 354-360 (2004).
127. K. Rajendra Prasad, N. Miura, Electrochemically Synthesized MnO2-Based Mixed Oxides for High Performance Redox Supercapacitors. Electrochemistry Communications 6, 1004-1008 (2004).
128. J. Zhou et al., Flexible All-Solid-State Microsupercapacitor Based on Ni fiber Electrode Coated with MnO2 and Reduced Graphene Oxide via Electrochemical Deposition. Science China Materials 61, 243-253 (2018).
129. Y.-T. Zhou et al., Cobalt-Substituted Na0.44Mn1-xCoxO2: Phase Evolution and a High Capacity Positive Electrode for Sodium-Ion Batteries. Electrochimica Acta 213, 496-503 (2016).
130. Y.-T. Wu, C.-C. Hu, Effects of Electrochemical Activation and Multiwall Carbon Nanotubes on the Capacitive Characteristics of Thick MnO2 Deposits. Journal of The Electrochemical Society 151, A2060 (2004).
131. Z. Liu, R. Ma, Y. Ebina, K. Takada, T. Sasaki, Synthesis and Delamination of Layered Manganese Oxide Nanobelts. Chemistry of Materials 19, 6504-6512 (2007).
132. M. F. Dupont, S. W. Donne, Nucleation and Growth of Electrodeposited Manganese Dioxide for Electrochemical Capacitors. Electrochimica Acta 120, 219-225 (2014).
133. S. Boyd, V. Augustyn, Transition Metal Oxides for Aqueous Sodium-Ion Electrochemical Energy Storage. Inorganic Chemistry Frontiers 5, 999-1015 (2018).
134. D. A. Kitchaev, S. T. Dacek, W. Sun, G. Ceder, Thermodynamics of Phase Selection in MnO2 Framework Structures through Alkali Intercalation and Hydration. Journal of American Chemical Society 139, 2672-2681 (2017).
135. C. J. Clarke, G. J. Browning, S. W. Donne, An RDE and RRDE Study into the Electrodeposition of Manganese Dioxide. Electrochimica Acta 51, 5773-5784 (2006).
136. M.-S. Wu, J.-T. Lee, Y.-Y. Wang, C.-C. Wan, Field Emission from Manganese Oxide Nanotubes Synthesized by Cyclic Voltammetric Electrodeposition. The Journal of Physical Chemistry B 108, 16331-16333 (2004).
137. I. B. Foster, J. A. Lee, F. L. Tye, The Effect of Heat Treatments on the Semiconductor Properties of a Commercially Electrodeposited Manganese Dioxide. 22, 1085-1093 (1972).
138. R. Giovanoli, E. Stähli, W. Feitknecht, Über Oxidhydroxide des Vierwertigen Mangans mit Schichtengitter 2. Mitteilung: Mangan (III)-Mnganat (IV). 53, 453-464 (1970).
139. X. Shan et al., Structural Water and Disordered Structure Promote Aqueous Sodium-Ion Energy Storage in Sodium-Birnessite. Nature Communications 10, 4975 (2019).
140. Z. Sun et al., New Insight on The Mechanism of Electrochemical Cycling Effects in MnO2-Based Aqueous Supercapacitor. Journal of Power Sources 436, 226795 (2019).
141. P. Gao et al., The Critical Role of Point Defects in Improving the Specific Capacitance of δ-MnO2 Nanosheets. Nature Communications 8, 14559 (2017).
142. D. Chen et al., Probing the Charge Storage Mechanism of a Pseudocapacitive MnO2 Electrode Using in Operando Raman Spectroscopy. Chemistry of Materials 27, 6608-6619 (2015).
143. L. Athouël et al., Variation of the MnO2 Birnessite Structure upon Charge/Discharge in an Electrochemical Supercapacitor Electrode in Aqueous Na2SO4 Electrolyte. Journal of Physical Chemistry C 112, 7270-7277 (2008).
144. N. Jabeen et al., Enhanced Pseudocapacitive Performance of α-MnO2 by Cation Preinsertion. ACS Applied Materials & Interfaces 8, 33732-33740 (2016).
145. L. L. Zhang, X. S. Zhao, Carbon-Based Materials as Supercapacitor Electrodes. Chemical Society Reviews 38, 2520-2531 (2009).
146. W. Guo et al., Strategies and Insights towards the Intrinsic Capacitive Properties of MnO2 for Supercapacitors: Challenges and Perspectives. Nano Energy 57, 459-472 (2019).
147. J. Hao et al., Face-to-Face Self-Assembly Graphene/MnO2 Nanocomposites for Supercapacitor Applications Using Electrochemically Exfoliated Graphene. Electrochimica Acta 167, 412-420 (2015).
148. C. Xiong, T. Li, M. Khan, H. Li, T. Zhao, A Three-Dimensional MnO2/Graphene Hybrid as A Binder-Free Supercapacitor Electrode. RSC Advances 5, 85613-85619 (2015).
149. Y. Liu et al., Layered-MnO2 Nanosheet Grown on Nitrogen-Doped Graphene Template as a Composite Cathode for Flexible Solid-State Asymmetric Supercapacitor. ACS Applied Materials & Interfaces 8, 5251-5260 (2016).
150. Y. Song, Z. Li, K. Guo, T. Shao, Hierarchically Ordered Mesoporous Carbon/Graphene Composites as Supercapacitor Electrode Materials. Nanoscale 8, 15671-15680 (2016).
151. F. Ochai-Ejeh et al., Electrochemical Performance of Hybrid Supercapacitor Device Based on Birnessite-Type Manganese Oxide Decorated on Uncapped Carbon Nanotubes and Porous Activated Carbon Nanostructures. Electrochimica Acta 289, 363-375 (2018).
152. G. Huang, Y. Zhang, L. Wang, P. Sheng, H. Peng, Fiber-Based MnO2/Carbon Nanotube/Polyimide Asymmetric Supercapacitor. Carbon 125, 595-604 (2017).
153. M. Hu et al., High-Energy-Density Hydrogen-Ion-Rocking-Chair Hybrid Supercapacitors Based on Ti3C2Tx MXene and Carbon Nanotubes Mediated by Redox Active Molecule. ACS Nano 13, 6899-6905 (2019).
154. J. Zhou et al., Importance of Polypyrrole in Constructing 3D Hierarchical Carbon Nanotube@MnO2 Perfect Core–Shell Nanostructures for High-Performance Flexible Supercapacitors. Nanoscale 7, 14697-14706 (2015).
155. M. Kim, Y. Hwang, K. Min, J. Kim, Introduction of MnO2 Nanoneedles to Activated Carbon to Fabricate High-Performance Electrodes as Electrochemical Supercapacitors. Electrochimica Acta 113, 322-331 (2013).
156. M. Nakayama, S. Osae, K. Kaneshige, K. Komine, H. Abe, Direct Growth of Birnessite-Type MnO2 on Treated Carbon Cloth for a Flexible Asymmetric Supercapacitor with Excellent Cycling Stability. Journal of Electrochemical Society 163, A2340-A2348 (2016).
157. T. Liu, Z. Zhou, Y. Guo, D. Guo, G. Liu, Block Copolymer Derived Uniform Mesopores Enable Ultrafast Electron and Ion Transport at High Mass Loadings. Nature Communications 10, 675 (2019).
158. K.-W. Wang, W.-J. Shen, A Facile Two-Step Method for the Fabrication of Carbon Coated Manganese Oxide Nanostructure as a Binder-Free Supercapacitor Electrode. Materials Letters 247, 106-110 (2019).
159. T. Wang, Z. Peng, Y. Wang, J. Tang, G. Zheng, MnO Nanoparticle@Mesoporous Carbon Composites Grown on Conducting Substrates Featuring High-performance Lithium-ion Battery, Supercapacitor and Sensor. Scientific Reports 3, 2693 (2013).
160. L. Peng et al., Ultrathin Two-Dimensional MnO2/Graphene Hybrid Nanostructures for High-Performance, Flexible Planar Supercapacitors. Nano Letters 13, 2151-2157 (2013).
161. P. Wu et al., Synthesis and Characterization of Self-Standing and Highly Flexible δ-MnO2@CNTs/CNTs Composite Films for Direct Use of Supercapacitor Electrodes. ACS Applied Materials & Interfaces 8, 23721-23728 (2016).
162. Q. Peng et al., Cadmium Removal from Aqueous Solution by a Deionization Supercapacitor with a Birnessite Electrode. ACS Applied Materials & Interfaces 8, 34405-34413 (2016).
163. R. Dong et al., Enhanced Supercapacitor Performance of Mn3O4 Nanocrystals by Doping Transition-Metal Ions. ACS Applied Materials & Interfaces 5, 9508-9516 (2013).
164. X. Su et al., Controllable Hydrothermal Synthesis of Cu-Doped δ-MnO2 Films with Different Morphologies for Energy Storage and Conversion Using Supercapacitors. Applied Energy 134, 439-445 (2014).
165. G. Wang, Z. Ma, G. Zhang, C. Li, G. Shao, Cerium-Doped Porous K-Birnessite Manganese Oxides Microspheres as Pseudocapacitor Electrode Material with Improved Electrochemical Capacitance. Electrochimica Acta 182, 1070-1077 (2015).
166. M. Yao et al., Simple and Cost-Effective Approach To Dramatically Enhance the Durability and Capability of a Layered δ-MnO2 Based Electrode for Pseudocapacitors: A Practical Electrochemical Test and Mechanistic Revealing. ACS Applied Energy Materials 2, 2743-2750 (2019).
167. H. Ashassi-Sorkhabi, P. La’le Badakhshan, Electrochemical Synthesis of Three-Dimensional Porous Networks of Nickel with Different Micro-Nano Structures for the Fabrication of Ni/MnOx Nanocomposites with Enhanced Supercapacitive Performance. Applied Surface Science 419, 165-176 (2017).
168. S. Zhu, Q. Shan, F. Dong, Y. Zhang, L. Zhang, Fabrication of Mesoporous Gold Networks@MnO2 for High-Performance Supercapacitors. Gold Bulletin 50, 61-68 (2017).
169. T. Qiu et al., Au@MnO2 Core–Shell Nanomesh Electrodes for Transparent Flexible Supercapacitors. Small 10, 4136-4141 (2014).
170. X. Zhang et al., Rapid Hydrothermal Synthesis of Hierarchical Nanostructures Assembled from Ultrathin Birnessite-Type MnO2 Nanosheets for Supercapacitor Applications. Electrochimica Acta 89, 523-529 (2013).
171. H. Huang, X. Wang, Graphene Nanoplate-MnO2 Composites for Supercapacitors: a Controllable Oxidation Approach. Nanoscale 3, 3185-3191 (2011).
172. S. Zhu et al., Structural Directed Growth of Ultrathin Parallel Birnessite on β-MnO2 for High-Performance Asymmetric Supercapacitors. ACS Nano 12, 1033-1042 (2018).
173. V. A. Drits, E. Silvester, A. I. Gorshkov, A. Manceau, Structure of Synthetic Monoclinic Na-Rich Birnessite and Hexagonal Birnessite: I. Results from X-Ray Diffraction and Selected-Area Electron Diffraction 82, 946-961 (1997).
174. X. Peng et al., Double-Exchange Effect in Two-Dimensional MnO2 Nanomaterials. Journal of American Chemical Society 139, 5242-5248 (2017).
175. M. Feng et al., Manganese Oxide Electrode with Excellent Electrochemical Performance for Sodium ion Batteries by Preintercalation of K and Na Ions. Scientific Reports 7, 2219 (2017).
176. B. Lin et al., Birnessite Nanosheet Arrays with High K Content as a High-Capacity and Ultrastable Cathode for K-Ion Batteries. 31, 1900060 (2019).
177. Y. Zhang et al., Crystallization Design of MnO2 towards Better Supercapacitance. CrystEngComm 14, 5892-5897 (2012).
178. R. Tholkappiyan, A. N. Naveen, K. Vishista, F. Hamed, Investigation on The Electrochemical Performance of Hausmannite Mn3O4 Nanoparticles by Ultrasonic Irradiation Assisted Coprecipitation Method for Supercapacitor Electrodes. Journal of Taibah University for Science 12, 669-677 (2018).
179. H. Y. Lee, J. B. Goodenough, Supercapacitor Behavior with KCl Electrolyte. Journal of Solid State Chemistry 144, 220-223 (1999).
180. X. Zhang, Q. Fu, H. Huang, L. Wei, X. Guo, Silver-Quantum-Dot-Modified MoO3 and MnO2 Paper-Like Freestanding Films for Flexible Solid-State Asymmetric Supercapacitors. 15, 1805235 (2019).
181. C. Wang et al., Carbon-Modified Na2Ti3O7·2H2O Nanobelts as Redox Active Materials for High-Performance Supercapacitor. Nano Energy 28, 115-123 (2016).
182. W. Xu et al., Approaching the Lithium-Manganese Oxides' Energy Storage Limit with Li2MnO3 Nanorods for High-Performance Supercapacitor. Nano Energy 43, 168-176 (2018).
183. F. Nti, J. I. Han, Layered Na2/3Ni1/3Mn2/3O2 as Electrode Material with Two Redox Active Transition Metals for High Performance Supercapacitor. Journal of Alloys and Compounds 728, 78-87 (2017).
184. A. Adomkevicius et al., Na0.35MnO2 as An Ionic Conductor with Randomly Distributed Nano-Sized Layers. Journal of Materials Chemistry A 5, 10021-10026 (2017).
185. Z. Ma et al., High-Stability MnOx Nanowires@C@MnOx Nanosheet Core–Shell Heterostructure Pseudocapacitance Electrode Based on Reversible Phase Transition Mechanism. Small 15, 1900862 (2019).
186. R. N. Reddy, R. G. Reddy, Synthesis and Electrochemical Characterization of Amorphous MnO2 Electrochemical Capacitor Electrode Material. Journal of Power Sources 132, 315-320 (2004).
187. J. Shao, X. Li, Q. Qu, Y. Wu, Study on Different Power and Cycling Performance of Crystalline KxMnO2·nH2O as Cathode Material for Supercapacitors in Li2SO4, Na2SO4, and K2SO4 Aqueous Electrolytes. Journal of Power Sources 223, 56-61 (2013).
188. C. Tanggarnjanavalukul, N. Phattharasupakun, J. Wutthiprom, P. Kidkhunthod, M. Sawangphruk, Charge Storage Mechanisms of Birnessite-Type MnO2 Nanosheets in Na2SO4 Electrolytes with Different pH Values: In Situ Electrochemical X-ray Absorption Spectroscopy Investigation. Electrochimica Acta 273, 17-25 (2018).
189. T. Xiong, T. L. Tan, L. Lu, W. S. V. Lee, J. Xue, Harmonizing Energy and Power Density toward 2.7 V Asymmetric Aqueous Supercapacitor. Advanced Energy 8, 1702630 (2018).
190. H. Peng et al., Sodium In Situ Intercalated Ultrathin δ-MnO2 Flakes Electrode with Enhanced Intercalation Capacitive Performance for Asymmetric Supercapacitors. ChemistrySelect 5, 869-874 (2020).
191. W. Xu et al., Sodium Ions Preintercalation Stabilized Tunnel Structure of Na2Mn8O16 Nanorods for Supercapacitors with Long Cycle Life. Chemical Engineering Journal 354, 1050-1057 (2018).
192. H. Kanoh, W. Tang, Y. Makita, K. Ooi, Electrochemical Intercalation of Alkali-Metal Ions into Birnessite-Type Manganese Oxide in Aqueous Solution. Langmuir 13, 6845-6849 (1997).
193. Z. Su et al., Scalable fabrication of MnO2 nanostructure deposited on free-standing Ni nanocone arrays for ultrathin, flexible, high-performance micro-supercapacitor. Energy & Environmental Science 7, 2652-2659 (2014).
194. Y. Park et al., Understanding Hydrothermal Transformation from Mn2O3 Particles to Na0.55Mn2O4·1.5H2O Nanosheets, Nanobelts and Single Crystalline Ultra-Long Na4Mn9O18 Nanowires. Scientific Reports 5, 18275 (2015).
195. N. Karikalan, C. Karuppiah, S.-M. Chen, M. Velmurugan, P. Gnanaprakasam, Three-Dimensional Fibrous Network of Na0.21MnO2 for Aqueous Sodium-Ion Hybrid Supercapacitors. Chemistry – A European Journal 23, 2379-2386 (2017).
196. X. Yu, X. Yu, J. Zhang, Y. Zhao, Efficient Light-Trapping in Inverted Polymer Solar Cells Based on Textured FTO Transparent Electrodes. Materials Letters 130, 75-78 (2014).
197. N.-f. Ren, L.-j. Huang, M. Zhou, B.-j. Li, Introduction of Ag Nanoparticles and AZO Layer to Prepare AZO/Ag/FTO Trilayer Films with High Overall Photoelectric Properties. Ceramics International 40, 8693-8699 (2014).
198. S. Rodrigues, A. K. Shukla, N. Munichandraiah, A Cyclic Voltammetric Study of the Kinetics and Mechanism of Electrodeposition of Manganese Dioxide. Journal of Applied Electrochemistry 28, 1235-1241 (1998).
199. J. Luo, Q. Zhang, S. L. Suib, Mechanistic and Kinetic Studies of Crystallization of Birnessite. Inorganic Chemistry 39, 741-747 (2000).
200. A. Bard, J, Faulkner, L. R., Faulknler, LR Electrochemical Methods Fundameals and Applications. John Wiley & Sons, New York, (1980).
201. A. J. Bard, L. R. Faulkner, Electrochemical Methods : Fundamentals and Applications. (Wiley, New York, ed. 2nd ed., 2001).
202. A. J. Bard, L. R. Faulkner, J Electrochemical methods, Fundamentals and Applications. 2, 580-632 (2001).
203. C. Wei et al., Anomalous effect of K ions on electrochemical capacitance of amorphous MnO2. Journal of Power Sources 234, 1-7 (2013).
204. A. Cormie, A. Cross, A. F. Hollenkamp, S. W. Donne, Cycle Stability of Birnessite Manganese Dioxide for Electrochemical Capacitors. Electrochimica Acta 55, 7470-7478 (2010).
205. M. H. Rossouw, D. C. Liles, M. M. Thackeray, W. I. F. David, S. Hull, Alpha Manganese Dioxide for Lithium Batteries: A Structural and Electrochemical Study. Materials Research Bulletin 27, 221-230 (1992).
206. M. H. Alfaruqi et al., Structural transformation and electrochemical study of layered MnO2 in rechargeable aqueous zinc-ion battery. Electrochimica Acta 276, 1-11 (2018).
207. K. Kuma, A. Usui, W. Paplawsky, B. Gedulin, G. Arrhenius, Crystal Structures of Synthetic 7 Å and 10 Å Manganates Substituted by Mono- and Divalent Cations. Mineralogical Magazine 58, 425-447 (1994).
208. Z.-Y. Li, R. Gao, L. Sun, Z. Hu, X. Liu, Designing an advanced P2-Na0.67Mn0.65Ni0.2Co0.15O2 layered cathode material for Na-ion batteries. Journal of Materials Chemistry A 3, 16272-16278 (2015).
209. H. Wang et al., Differences in Sb(V) and As(V) Adsorption onto A Poorly Crystalline Phyllomanganate (δ-MnO2): Adsorption Kinetics, Isotherms, and Mechanisms. Process Safety and Environmental Protection 113, 40-47 (2018).
210. X.-Z. Zhai et al., Layered Birnessite Cathode with A Displacement/Intercalation Mechanism for High-Performance Aqueous Zinc-Ion Batteries. Nano-Micro Letters 12, 56 (2020).
211. N. Bucher et al., P2–NaxCoyMn1–yO2 (y = 0, 0.1) as Cathode Materials in Sodium-Ion Batteries—Effects of Doping and Morphology To Enhance Cycling Stability. Chemistry of Materials 28, 2041-2051 (2016).
212. G. Sai Gautam, P. Canepa, W. D. Richards, R. Malik, G. Ceder, Role of Structural H2O in Intercalation Electrodes: The Case of Mg in Nanocrystalline Xerogel-V2O5. Nano Letters 16, 2426-2431 (2016).
213. J. Zhang et al., Na-Mn-O Nanocrystals as A High Capacity and Long Life Anode Material for Li-Ion Batteries. Advanced Energy Materials 7, 1602092 (2017).
214. J. E. Post, D. R. Veblen, Crystal Structure Determinations of Synthetic Sodium, Magnesium, and Potassium Birnessite Using TEM and the Rietveld Method. American Mineralogist 75, 477-489 (1990).
215. M. J. Young et al., Sodium Charge Storage in Thin Films of MnO2 Derived by Electrochemical Oxidation of MnO Atomic Layer Deposition Films. Journal of The Electrochemical Society 162, A2753-A2761 (2015).
216. D. Banerjee, H. W. Nesbitt, XPS Study of Dissolution of Birnessite by Humate with Constraints on Reaction Mechanism. Geochimica et Cosmochimica Acta 65, 1703-1714 (2001).
217. J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles. The Journal of Physical Chemistry C 111, 14925-14931 (2007).
218. J. Billaud et al., β-NaMnO2: A High-Performance Cathode for Sodium-Ion Batteries. Journal of American Chemical Society 136, 17243-17248 (2014).

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *